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1 Introduction

Let M/C be a complex manifold and let E — M be a rank n vector bundle. A connection
on M is a C-linear map I'(E) — T'(T* M ® E) satisfying the Leibniz rule V(fs) = df ® s+
fV(s), forall f e T(M),s € T(E). By evaluating V at vector fields 9, it can equivalently
be viewed as a map I'(T'M) — End(E) : 0 — V.

Given z,y € M, let v be a smooth path with v(0) = z,v(1) = y, then 4 is a vector
field along ~. Let e, € F,, then by the existence of solutions to linear ODEs with given
initial conditions (Picard-Lindelof theorem), there exists a unique section s of E along ~
such that V;s = 0 and s(0) = e;. Set e, = s(1), then by considering the reversed path we
have determined an isomorphism I'(y)Y : E, — E, which, if V is flat, can be shown to
depend only on the path homotopy class of 7. This is known as parallel transport along
~. In particular the connection has given us a canonical identification of “nearby” fibers
of E, basically since M = CY™ M Jocally, which is simply-connected.

In this talk we will present a generalisation of vector bundles with flat connection
(D-modules), and an algebraic incarnation of “identifying nearby fibers” (crystals), and
relate them.
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2 D-modules

Let X/C be a smooth scheme and let Dx C Home(Ox,Ox) be the subsheaf of algebras
generated by Ox and Ty = Derc(Ox,Ox). A Dx-module is a Dx-module object M €
QCoh(X), extending the O x-module structure. This is the same! as giving a connection
V:M—= M®oy Qk/c which is flat, ie. VAV : M — M ®o, QE(/C. Therefore
D x-modules generalise vector bundles with connection by removing the finite locally free
hypothesis.

2.1 Differential operators
For M, N € QCoh(X) recursively define Dif fO(M, N) := Homo, (M, N) and

Dif f""Y(M,N) := {D € Hom¢c(M,N): fD — Df € Dif f*(M,N) for all f € Ox},
(1)
and set Dif f(M,N) = ;o Dif f*(M,N). For example Dx = Diff(Ox,Ox). It is
clear that Dif f(M, N) is filtered, and in fact if M, N are locally free then gr Di f f(M, N) =
Homp, (M, N) ®o, Sym® Tx. Thus if £ is a line bundle then Dx (L, L) := Dif f(L, L) =
Sym® Tx and this is in fact an isomorphism of Poisson algebras? (recall that for any filtered
graded-commutative ring D, gr D has the canonical structure of a Poisson algebra).

Definition 2.1. [Gin98, Definition 2.2.1] A TDO is a positively filtered sheaf D of C-
algebras together with an isomorphism gr D = Sym® Tx of Poisson algebras.

The category Modp, is abelian and closed symmetric monoidal with respect to ®o,
Homo, (—,—). Unfortunately, given a smooth morphism f : X — Y of smooth schemes
there is no obvious morphism of ringed spaces (X,Dx) — (Y, Dy) extending this. This
makes push/pull of D-modules difficult to define. In fact, f. only exists at the derived
level. The next section is intended to give a more intuitive description of these functors.

2.2 DG-modules over the de Rham complex

The main reference for this section is [Kap91], see also [BD, §7.2, 7.3]. The content of this
section (D-Q duality) can be seen as an instance of Koszul duality [Posll, Appendix B].

Let X/C be a smooth quasi-projective variety. Recall that a DG-algebra is a graded
algebra A with degree 1 differential d satisfying d o d = 0 and the graded Leibnitz rule
d(ab) = (da) - b+ (—1)4°8q - (db) (for homogeneous a, b), i.e., a monoid object in chain
complexes. For example the de Rham complex Q% is a sheaf of DG-algebras on Xza,,
we define an Q%-module as a module object for this in Ch(QCoh(X)). A morphism
of such is just an Ox-linear map of complexes and we denote the category of such by
Me(2%). This is nothing but the full subcategory of M* € Ch(QCoh(X)) where we
require d € Dif f(M?, M*+1) for all 4.

We can also consider graded left modules (without differential) over the graded algebra
Q%, which we call Qﬁ—modules.

M?E(Q%) shall denote the category of Q%-modules M®, such that M* is a bounded
complex of coherent O x-modules.

If s : M* — N°*[1] is a morphism of Q??—modules then f = dys+sdys is a morphism of
Q%-modules which we call “homotopic to 0” and we form the homotopy category K%(Q% )

IThe first condition just says that Tx acts by derivations and the flatness says that the components
of Tx commute with each other.
2A Poisson algebra is a commutative algebra with Lie bracket {-,-} which is a bi-derivation.



as a quotient of M2%(Q%). A map f: M® — N*® in M%(Q%) is called a quasi-isomorphism
if fan : M2, — N2, is a quasi-isomorphism of complexes of sheaves on X,,; localising, we
form D2(Q%). Given M*® € M(Q%) consider the complex

DR (M®) := [~-~—>M0 ®oy Dx > M' @0, Dy — -+ 2)
where ¢ is defined by

M ®o, Dx —2>— Mt @0, Dx
‘g o~ (3)

Dif f(Ox, M?) %5 Dif f(Ox, M**)

— 1
This extends to an exact functor DR : DZ(Q}) — DS(DX). We define also the functor
DR : D})(Dx) — Di(Q%) : N* — N* @3 Ox, it is well-defined by the existence of the
Spencer resolution.

— -1
Theorem 2.2. [Kap91, Theorem 1.4],[Sai89, Proposition 1.2] The functors DR , DR
are mutual quasi-inverses giving an equivalence of categories D2(Q%) = D%(Dx).

Thus D%(Q%) is a “direct” definition of D%(Dx). For a smooth morphism f: X — Y
of smooth varieties over C put f,, f~! for the sheaf-theoretic direct/inverse images, then
f induces a morphism of DG-ringed spaces (X,Q%) — (Y,Q%), i.e, we have a DG-
algebra map Q3 — f.Q%, equivalently f~1Q3 — Q%. Thus we can define push/pull on
Mc(©2°) in the usual way, i.e., fo .M® := f, M* with the action given by restriction along
QY = fu0%, and fON® 1= Q% @10y JTIN®, for M® € My (Q%), N® € My(Q3%). The
pushforward fq . has to be “derived” to get a functor Rfq . : D2(Q%) — Db(Q%). By
using Theorem 2.2 one can recover the usual formulas for push/pull of D-modules.

The analogue of Theorem 2.2 for D;c(DX), 7 € {0,+, —, b} is more subtle to define.
Just as above, we are always able to define an adjoint pair of functors

DR ' K(0%) = K..(Dx): DR (4)

however we must be careful about which quasi-isomorphisms to invert on the left, c.f.

— 1
[BD04, §2.1.10]. One defines a D-quasi-isomorphism as those v where DR (¢) is a
quasi-isomorphism in KZC(DX) and DZC(QB() is the localisation at these, then we get the

~

equivalence D! (Q%) = D].(Dx).

3 Crystals

As mentioned, crystals are supposed to be an algebraic incarnation of “identifying nearby
fibers”. The main reference for this section is [Lur09].

Let X/k be any separated scheme over any field k of characteristic 0 (not necessarily
smooth), which we may view as a functor on commutative k-algebras R. For a quasi-
coherent sheaf M on X and z € X(R) we have the pullback 2*M € Modg. We say
z,y € X(R) are infinitesimally close if they agree in the image of X (R) — X (R**d). Then
a crystal in quasi-coherent sheaves is such an M, together with the data of isomorphisms
Qg &M — y*M for every pair z,y € X(R) of infinitesimally close points, compatible
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with base change in R and satisfying a cocycle condition (coming from the transitivity of
the relation of being “infinitesimally close”).

If one defines the functor Xggr(R) := X (R™Y) then this is the same as the data of a
quasi-coherent sheaf on Xgr, where for an arbitrary functor CommAlg, — Set a quasi-
coherent sheaf on it is defined as in [Lur09]. We think of X(R) — X4r(R) as giving
Xar(R) the structure of a groupoid (where we have divided by the relation of being
infinitesimally close), the “infinitesimal groupoid”. If X is smooth then Xgg is a sheaf on
Sch‘;g and accordingly is called the de Rham stack.

Consider (c.f. [Gro68, Appendix]) the diagram

P12

(X % X x X)y Zomd (X x X)y =3 X (5)

where (X x X),, etc, is the formal completion along the diagonal, pi2,p1, etc, are the
projections®. We claim that a crystal is the same as the data (M, ) where M € QCoh(X)
and ¢ : pi M = p3M is an isomorphism which restricts to id on the diagonal and satisfies
the cocycle condition pi4(p) o pis(p) = pis(¢): morally speaking, Xqg is the coequaliser
of the diagram (5).

For, to say that x,y : Spec(R) — X are infinitesimally close is the same as saying
that (z,y) : Spec(R™?) — X x X factors through the diagonal, i.e., (z,y)*J C nilrad(R),
where J is the ideal defining the diagonal; so*

(z,y)*T" T = 0 for some n > 0. (6)

As a formal scheme, (X x X)), is just a particular kind of ind-scheme®, and so (X x X)(R) =
lign(X x X)X (R), one then notes that (6) says exactly that (z,y) € (X x X)X (R). Thus

we have shown that (X x X), is universal for pairs of infinitesimally close morphisms
(z,y), hence to give all the data of a crystal it is sufficient to give M € QCoh(X) with an
isomorphism ¢ : pf M — p3 M satisfying the cocycle condition.

If X is smooth this is the same as a Dx-module. For, by the usual adjunction ¢
translates to a map

@:M—)pL*p;M:]'&nOXxX/j’ﬁl ®ox M (7)
n

since X is smooth we can take étale coordinates {z;} locally and identify Dx with the
restricted (filtered) Ox-dual of @n Oxxx /I by the pairing (9%, %(Jc’ — ")) = Sap
(extended bilinearly). Therefore the “coaction” (7) can be transposed to an action @' :
Dx ®oy M — M; that this extends the Ox action and is associative, is equivalent to

»|a = id and the cocycle condition.

3.1 D-schemes, jets, conformal blocks

The main references for this section are [Neg09, Lur09]. We can define crystals valued
in all sorts of objects. For example if S/k is a smooth scheme then we define a crystal

3This makes the pair (X, (X x X),) into a formal groupoid in the sense of Simpson [Sim97, §7], who
then defines XgRr as the stack associated to this formal groupoid; he then shows that if X is smooth then
X4r(R) = X(R**9). Here we are starting the other way round.
For simplicity assume R is Noetherian...

5i.e., just the ones whose reduction is actually a scheme.



of schemes over S as an S-scheme Z = S, with the following additional data: for
each R € CommAlg, and each pair of infinitesimally close morphisms z,y € S(R) an
isomorphism z*Z =5 y*Z, compatible with base change in R and satisfying a cocycle
condition. Here 2*Z := Z x g, Spec(R).

In a manner analogous to previous, there is a relation to Dg-modules, namely a canon-
ical equivalence

CommMon(Modp, )% =2 {crystals of S-schemes 7 : Z — S with 7 affine}, (8)

objects on the left are “affine” Dg-schemes. More generally a Dg-scheme is an S-scheme
equipped with a flat connection Oz — Oz ®o4 le/k, for example MS(SymOS M) for
any Dg-module M. Dg-schemes give a coordinate-free way of writing nonlinear differential
equations. They have an obvious forgetful functor to S-schemes, which has an adjoint 7,
the functor of jets. Given a commutative Og-algebra A with X = Spec(A) one sets

JX = Spec ((Symp, Dx ®o, A)/ ker(Symp, A — A)) (9)

and this can be globalised by gluing. Given a morphism of Dg-schemes Y — Z one defines
the functor (on Sch?i) of horizontal sections

HorSect(Z, Y )(T') := Homscen,, /2(Z x T,Y), (10)

they are “horizontal” since they are automatically Dg-scheme maps. If X is an S—scheme
with a map to the Dg-scheme Z then the adjunction gives as Dg-scheme map JX — Z,
and unraveling the adjunctions one has

HorSect(Z, JX) = Sect(Z, X), (11)

where the functor of sections is given by Sect(Z, X )(T) := Homsehg /z(Z xT, X ). Therefore
one can recover X from its jet-scheme. A particular case is the functor of conformal blocks,
defined by Hy (S,Y) := HorSect(S,Y) for Y € Schp,, here Y — S is the structural map.

This has the following interpretation in terms of crystals. A crystal of S-schemes
(equivalently Dg-scheme) is the same as a relatively representable functor Z over the de
Rham stack Sgr. The forgetful functor from crystals of S-schemes to S-schemes is given
by pullback along the “tautological” 2-morphism par,s : S — Sar, i.e., Pig g = — X54r S,
and the jet-functor is given by pushforward pqg,s,«, i.e., Weil restriction [Sta, Tag 05Y8].
Given crystals of S-schemes Y, Z with a map Y — Z over Sqgr, the functor of horizontal
sections is given by pushforward (Weil restriction) of functors along Z — pt, and the
conformal block functor is the particular case when we take Z = S and the structural
map Y — S. Therefore we see that Hy is adjoint to the functor taking a scheme T to
the constant Dg-scheme S x T, i.e.,

Homsch/k(Hv(S, Y),X) = HomSchDS (Y,X X S), (12)

for any Dg-scheme Y and X € Sch/k.
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