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1 Introduction

LetM/C be a complex manifold and let E →M be a rank n vector bundle. A connection
onM is a C-linear map Γ(E)→ Γ(T ∗M ⊗E) satisfying the Leibniz rule ∇(fs) = df ⊗s+
f∇(s), for all f ∈ Γ(M), s ∈ Γ(E). By evaluating ∇ at vector fields ∂, it can equivalently
be viewed as a map Γ(TM)→ End(E) : ∂ 7→ ∇∂ .

Given x, y ∈ M , let γ be a smooth path with γ(0) = x, γ(1) = y, then γ̇ is a vector
field along γ. Let ex ∈ Ex, then by the existence of solutions to linear ODEs with given
initial conditions (Picard-Lindelöf theorem), there exists a unique section s of E along γ
such that ∇γ̇s = 0 and s(0) = ex. Set ey = s(1), then by considering the reversed path we

have determined an isomorphism Γ(γ)yx : Ex
∼−→ Ey which, if ∇ is flat, can be shown to

depend only on the path homotopy class of γ. This is known as parallel transport along
γ. In particular the connection has given us a canonical identification of “nearby” fibers
of E, basically since M ∼= CdimM locally, which is simply-connected.

In this talk we will present a generalisation of vector bundles with flat connection
(D-modules), and an algebraic incarnation of “identifying nearby fibers” (crystals), and
relate them.
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2 D-modules

Let X/C be a smooth scheme and let DX ⊂ HomC(OX ,OX) be the subsheaf of algebras
generated by OX and TX = DerC(OX ,OX). A DX -module is a DX -module object M ∈
QCoh(X), extending the OX -module structure. This is the same1 as giving a connection
∇ : M → M ⊗OX

Ω1
X/C which is flat, i.e. ∇ ∧ ∇ : M → M ⊗OX

Ω2
X/C. Therefore

DX -modules generalise vector bundles with connection by removing the finite locally free
hypothesis.

2.1 Differential operators

For M,N ∈ QCoh(X) recursively define Diff0(M,N) := HomOX
(M,N) and

Diffn+1(M,N) := {D ∈ HomC(M,N) : fD −Df ∈ Diffn(M,N) for all f ∈ OX} ,
(1)

and set Diff(M,N) :=
⋃

n≥0Diffn(M,N). For example DX = Diff(OX ,OX). It is
clear thatDiff(M,N) is filtered, and in fact ifM,N are locally free then grDiff(M,N) ∼=
HomOX

(M,N)⊗OX
Sym• TX . Thus if L is a line bundle then DX(L,L) := Diff(L,L) ∼=

Sym• TX and this is in fact an isomorphism of Poisson algebras2 (recall that for any filtered
graded-commutative ring D, grD has the canonical structure of a Poisson algebra).

Definition 2.1. [Gin98, Definition 2.2.1] A TDO is a positively filtered sheaf D of C-
algebras together with an isomorphism grD ∼= Sym• TX of Poisson algebras.

The category ModDX
is abelian and closed symmetric monoidal with respect to ⊗OX

,
HomOX

(−,−). Unfortunately, given a smooth morphism f : X → Y of smooth schemes
there is no obvious morphism of ringed spaces (X,DX) → (Y,DY ) extending this. This
makes push/pull of D-modules difficult to define. In fact, f∗ only exists at the derived
level. The next section is intended to give a more intuitive description of these functors.

2.2 DG-modules over the de Rham complex

The main reference for this section is [Kap91], see also [BD, §7.2, 7.3]. The content of this
section (D-Ω duality) can be seen as an instance of Koszul duality [Pos11, Appendix B].

Let X/C be a smooth quasi-projective variety. Recall that a DG-algebra is a graded
algebra A with degree 1 differential d satisfying d ◦ d = 0 and the graded Leibnitz rule
d(ab) = (da) · b + (−1)deg aa · (db) (for homogeneous a, b), i.e., a monoid object in chain
complexes. For example the de Rham complex Ω•

X is a sheaf of DG-algebras on XZar,
we define an Ω•

X -module as a module object for this in Ch(QCoh(X)). A morphism
of such is just an OX -linear map of complexes and we denote the category of such by
Mqc(Ω

•
X). This is nothing but the full subcategory of M• ∈ Ch(QCoh(X)) where we

require d ∈ Diff(M i,M i+1) for all i.
We can also consider graded left modules (without differential) over the graded algebra

Ω•
X , which we call Ω#

X -modules.
Mb

c(Ω
•
X) shall denote the category of Ω•

X -modules M•, such that M• is a bounded
complex of coherent OX -modules.

If s :M• → N•[1] is a morphism of Ω#
X -modules then f = dNs+sdM is a morphism of

Ω•
X -modules which we call “homotopic to 0” and we form the homotopy category Kb

c(Ω
•
X)

1The first condition just says that TX acts by derivations and the flatness says that the components
of TX commute with each other.

2A Poisson algebra is a commutative algebra with Lie bracket {·, ·} which is a bi-derivation.
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as a quotient ofMb
c(Ω

•
X). A map f :M• → N• inMb

c(Ω
•
X) is called a quasi-isomorphism

if fan :M•
an → N•

an is a quasi-isomorphism of complexes of sheaves on Xan; localising, we
form Db

c(Ω
•
X). Given M• ∈M(Ω•

X) consider the complex

DR−1(M•) :=
[
· · · →M0 ⊗OX

DX
δ−→M1 ⊗OX

DX → · · ·
]

(2)

where δ is defined by

M i ⊗OX
DX M i+1 ⊗OX

DX

Diff(OX ,M
i) Diff(OX ,M

i+1)
dM◦−

∼= ∼=

δ

(3)

This extends to an exact functor D̃R
−1

: Db
c(Ω

•
X)→ Db

c(DX). We define also the functor

D̃R : Db
c(DX) → Db

c(Ω
•
X) : N• 7→ N• ⊗L

DX
OX , it is well-defined by the existence of the

Spencer resolution.

Theorem 2.2. [Kap91, Theorem 1.4],[Sai89, Proposition 1.2] The functors D̃R
−1

, D̃R
are mutual quasi-inverses giving an equivalence of categories Db

c(Ω
•
X) ∼= Db

c(DX).

Thus Db
c(Ω

•
X) is a “direct” definition of Db

c(DX). For a smooth morphism f : X → Y
of smooth varieties over C put f∗, f

−1 for the sheaf-theoretic direct/inverse images, then
f induces a morphism of DG-ringed spaces (X,Ω•

X) → (Y,Ω•
Y ), i.e, we have a DG-

algebra map Ω•
Y → f∗Ω

•
X , equivalently f−1Ω•

Y → Ω•
X . Thus we can define push/pull on

Mqc(Ω
•) in the usual way, i.e., fΩ,∗M

• := f∗M
• with the action given by restriction along

Ω•
Y → f∗Ω

•
X , and f∗ΩN

• := Ω•
X⊗f−1Ω•

Y
f−1N•, forM• ∈Mqc(Ω

•
X), N• ∈Mqc(Ω

•
Y ). The

pushforward fΩ,∗ has to be “derived” to get a functor RfΩ,∗ : Db
c(Ω

•
X) → Db

c(Ω
•
Y ). By

using Theorem 2.2 one can recover the usual formulas for push/pull of D-modules.
The analogue of Theorem 2.2 for D?

qc(DX), ? ∈ {∅,+,−, b} is more subtle to define.
Just as above, we are always able to define an adjoint pair of functors

D̃R
−1

: K?
qc(Ω

•
X) ⇆ K?

qc(DX) : D̃R (4)

however we must be careful about which quasi-isomorphisms to invert on the left, c.f.

[BD04, §2.1.10]. One defines a D-quasi-isomorphism as those ψ where D̃R
−1

(ψ) is a
quasi-isomorphism in K?

qc(DX) and D?
qc(Ω

•
X) is the localisation at these, then we get the

equivalence D?
qc(Ω

•
X) ∼= D?

qc(DX).

3 Crystals

As mentioned, crystals are supposed to be an algebraic incarnation of “identifying nearby
fibers”. The main reference for this section is [Lur09].

Let X/k be any separated scheme over any field k of characteristic 0 (not necessarily
smooth), which we may view as a functor on commutative k-algebras R. For a quasi-
coherent sheaf M on X and x ∈ X(R) we have the pullback x∗M ∈ ModR. We say
x, y ∈ X(R) are infinitesimally close if they agree in the image of X(R)→ X(Rred). Then
a crystal in quasi-coherent sheaves is such an M , together with the data of isomorphisms
αx,y : x∗M → y∗M for every pair x, y ∈ X(R) of infinitesimally close points, compatible

3



Some perspectives on differential operators in algebraic geometry

with base change in R and satisfying a cocycle condition (coming from the transitivity of
the relation of being “infinitesimally close”).

If one defines the functor XdR(R) := X(Rred) then this is the same as the data of a
quasi-coherent sheaf on XdR, where for an arbitrary functor CommAlgk → Set a quasi-
coherent sheaf on it is defined as in [Lur09]. We think of X(R) → XdR(R) as giving
XdR(R) the structure of a groupoid (where we have divided by the relation of being
infinitesimally close), the “infinitesimal groupoid”. If X is smooth then XdR is a sheaf on
Schop/k and accordingly is called the de Rham stack.

Consider (c.f. [Gro68, Appendix]) the diagram¤�(X ×X ×X)∆
ÿ�(X ×X)∆ X

p31

p12

p23
p2

p1

(5)

where ÿ�(X ×X)∆, etc, is the formal completion along the diagonal, p12, p1, etc, are the
projections3. We claim that a crystal is the same as the data (M,φ) whereM ∈ QCoh(X)
and φ : p∗1M

∼−→ p∗2M is an isomorphism which restricts to id on the diagonal and satisfies
the cocycle condition p∗23(φ) ◦ p∗12(φ) = p∗13(φ): morally speaking, XdR is the coequaliser
of the diagram (5).

For, to say that x, y : Spec(R) → X are infinitesimally close is the same as saying
that (x, y) : Spec(Rred)→ X×X factors through the diagonal, i.e., (x, y)∗J ⊂ nilrad(R),
where J is the ideal defining the diagonal; so4

(x, y)∗J n+1 = 0 for some n ≥ 0. (6)

As a formal scheme, ÿ�(X ×X)∆ is just a particular kind of ind-scheme5, and so ÿ�(X ×X)∆(R) =
lim−→n

(X ×X)n∆(R), one then notes that (6) says exactly that (x, y) ∈ (X ×X)n∆(R). Thus

we have shown that ÿ�(X ×X)∆ is universal for pairs of infinitesimally close morphisms
(x, y), hence to give all the data of a crystal it is sufficient to give M ∈ QCoh(X) with an
isomorphism φ : p∗1M

∼−→ p∗2M satisfying the cocycle condition.
If X is smooth this is the same as a DX -module. For, by the usual adjunction φ

translates to a map

φ̃ :M → p1,∗p
∗
2M = lim←−

n

OX×X/J n+1 ⊗OX
M (7)

since X is smooth we can take étale coordinates {xi} locally and identify DX with the
restricted (filtered) OX -dual of lim←−n

OX×X/J n+1 by the pairing ⟨∂α, 1
β! (x

′−x′′)β⟩ = δαβ
(extended bilinearly). Therefore the “coaction” (7) can be transposed to an action φ̃t :
DX ⊗OX

M → M ; that this extends the OX action and is associative, is equivalent to
φ|∆ = id and the cocycle condition.

3.1 D-schemes, jets, conformal blocks

The main references for this section are [Neg09, Lur09]. We can define crystals valued
in all sorts of objects. For example if S/k is a smooth scheme then we define a crystal

3This makes the pair (X,Ÿ�(X ×X)∆) into a formal groupoid in the sense of Simpson [Sim97, §7], who
then defines XdR as the stack associated to this formal groupoid; he then shows that if X is smooth then
XdR(R) = X(Rred). Here we are starting the other way round.

4For simplicity assume R is Noetherian...
5i.e., just the ones whose reduction is actually a scheme.
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of schemes over S as an S-scheme Z
π−→ S, with the following additional data: for

each R ∈ CommAlgk and each pair of infinitesimally close morphisms x, y ∈ S(R) an
isomorphism x∗Z

∼−→ y∗Z, compatible with base change in R and satisfying a cocycle
condition. Here x∗Z := Z ×S,x Spec(R).

In a manner analogous to previous, there is a relation to DS-modules, namely a canon-
ical equivalence

CommMon(ModDS
)op ∼= {crystals of S-schemes π : Z → S with π affine} , (8)

objects on the left are “affine” DS-schemes. More generally a DS-scheme is an S-scheme
equipped with a flat connection OZ → OZ ⊗OS

Ω1
S/k, for example Spec

S
(SymOS

M) for
anyDS-moduleM. DS-schemes give a coordinate-free way of writing nonlinear differential
equations. They have an obvious forgetful functor to S-schemes, which has an adjoint J ,
the functor of jets. Given a commutative OS-algebra A with X = Spec

S
(A) one sets

JX := Spec
S
((SymOS

DX ⊗OS
A)/ ker(SymOS

A→ A)) (9)

and this can be globalised by gluing. Given a morphism of DS-schemes Y → Z one defines
the functor (on Schop/k) of horizontal sections

HorSect(Z, Y )(T ) := HomSchDS
/Z(Z × T, Y ), (10)

they are “horizontal” since they are automatically DS-scheme maps. If X is an S−scheme
with a map to the DS-scheme Z then the adjunction gives as DS-scheme map JX → Z,
and unraveling the adjunctions one has

HorSect(Z,JX) = Sect(Z,X), (11)

where the functor of sections is given by Sect(Z,X)(T ) := HomSchS/Z(Z×T,X). Therefore
one can recoverX from its jet-scheme. A particular case is the functor of conformal blocks,
defined by H∇(S, Y ) := HorSect(S, Y ) for Y ∈ SchDS

, here Y → S is the structural map.
This has the following interpretation in terms of crystals. A crystal of S-schemes

(equivalently DS-scheme) is the same as a relatively representable functor Z over the de
Rham stack SdR. The forgetful functor from crystals of S-schemes to S-schemes is given
by pullback along the “tautological” 2-morphism pdR,S : S → SdR, i.e., p

∗
dR,S = −×SdR

S,
and the jet-functor is given by pushforward pdR,S,∗, i.e., Weil restriction [Sta, Tag 05Y8].
Given crystals of S-schemes Y, Z with a map Y → Z over SdR, the functor of horizontal
sections is given by pushforward (Weil restriction) of functors along Z → pt, and the
conformal block functor is the particular case when we take Z = S and the structural
map Y → S. Therefore we see that H∇ is adjoint to the functor taking a scheme T to
the constant DS-scheme S × T , i.e.,

HomSch/k(H∇(S, Y ), X) ∼= HomSchDS
(Y,X × S), (12)

for any DS-scheme Y and X ∈ Sch/k.
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