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My personal notes fromworkshop at IMPAN on [Cam24b]. I have left out some arguments I found uninter-
esting and available in [Cam24b]. Any mistakes in these notes are due to me. Some missing parts are left in
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1 Adic spaces as categorified locales (Akhil Mathew)
Setup :

– A Tate ring, i.e. topological ring defined via a non-Archimedean Banach norm and exists π ∈ A× with
|π| < 1.

– A+ subring of A such that

1. A+ ⊆ A◦

2. A+ open

3. A+ integrally closed

Huber defines a spectral space Spa (A,A+) and presheavesO,O+ which are sheaves in favorable situations.

Goal : recover Huber’s construction from a categorical generalisation.

Definition
Let C ∈ cAlg(PrLst). a For A commutative algebra in C, A is idempotent when A⊗A ∼−−→ A.

aPresentable stable infinity categories with colimit preserving functors. This has symmetric monoidal structure by the Lurie
tensor product.

Remark. 1. ModA(C) is a full subcategory of C.

2. Collection of idempotent algebras forms a poset with all colimits. [Aok23, Cor.2.8.] In particular, it is
small. (This comes from presentability of C.) 1

Definition
Amorphism i∗ : C → D in cAlg(PrLst) is a closed immersionwhen the right adjoint i∗ is fully faithful and
satisfies projection formula.a

aRight adjoint exists by adjoint functor theorem for presentably infinity categories. Indeed, this is one of the reasons for
restricting to PrLst.

Examples :

1. _⊗A : C → ModA(C) is a closed immersion.

2. X topological, Z ⊆ X closed subspace. Then i∗ : Sh(X)→ Sh(Z) is a closed immersion with idempo-
tent algebra i∗1.

3. Let X qcqs scheme and U ⊆ X open subscheme. Then restriction j∗ : QCoh(X) → QCoh(U) is a
closed immersion with Rj∗OU is the corresponding idempotent algebra. 2

1Mapping space between any two is empty or contractible.
2Remark from audience : The complement of U inX is a formal neighbourhood, which we should think of as a tubular neighbour-

hood, in particular open.
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Remark. If X Noetherian, then the category of idempotent algebras in QCoh(X) is equivalent to the ind-
completion of the opposite of the Zariski topology of X .

Another example : R commutative ring, I ⊆ R flat with I2 = I then R/I ∈ D(R) is idempotent.

Example for these talks : in D((Z[T ],Z)�), the algebras Z((1/T )) and Z[[T ]] are idempotent. In general, for
finitely generated R with an ideal I , then R∧I gives an idempotent algebra in D((Z[T ],Z)�).

Example : D((Qp[T ],Z)�) the derived category of modules of Qp[T ] in Z�-modules. Then Qp〈T 〉 is idempo-
tent. Also the algebra of overconvergent functions Qp (T )

†.

Proposition
Given A idempotent algebra in C ∈ cAlg(PrLst), consider Bousfield localisation

C/〈A〉 := {X ∈ C s.t. Hom(A,X) = 0}

Let j∗ : C/〈A〉 → C be be inclusion of the full subcategory. Then :

– j∗ has a left adjoint j∗ : C → C/〈A〉.

– j∗ has a further left adjoint j! maps X to Fib(1→ A)⊗X .

In general for j∗ : C → D, we call is an open immersion when it has a left adjoint j! which is fully
faithful and satisties projection formula.

Example : For X qcqs scheme and U ⊆ X open and Z ⊆ X closed in the complement, then QCoh(X) →
QCoh(X∧Z ) is an open immersion. 1

Example : X topological and Z ⊆ X closed with complement U , then j∗ : Sh(X) → Sh(U) is an open
immersion.

Example : (R, I) almost setup, then D(R)→ Da(R) is open immersion.

Example : The tensor functor D((Z[T ],Z)�) → D(Z[T ]�) is the complement open immersion to Z((1/T )).
[Cam24a, Prop.5.2.2.]

Example : The tensor functorD((Z[T ],Z)�)→ D((Z[T, 1/T ],Z[1/T ])�) is the open immersion complement
to Z[[T ]].

Proposition – Balman-Krause-Stevensen
For C ∈ cAlg(PrLst), the infinity category Idem(C) is a locale. Denote by Specbig(C).

Definition
A poset A is a locale when :

1. any subset has supremum, i.e. has all colimits

2. X ∧
∨
i∈I Yi =

∨
i∈I(X ∧ Yi).

A morphism A → B is a morphism of partially ordered sets B → A preserving all colimits and finite

1There exists finitely generated ideal of definition for Z by Noetherian assumptions.
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limits. a

aRemark from audience : To explain why the morphisms go backwards, maybe it is easier to say these are 0-topoi.

Example : X topological space, Open(X) gives a locale. Then given f : X → Y of topological spaces, we get
f∗ : Open(Y ) → Open(X), whicch we flip around f∗ : Open(X) → Open(Y ) to get a morphism of locales.
Akhil goes on to give the usual story about locales and sober spaces, locales with enough points (spatial
locales), etc. Point is locales generalise topological spaces. Locales fully faithfully embed into∞-topoi. The
topoi which come from locales, localic, are precisely the ones generated under colimits by subobjects (of the
final object? Akhil didn’t say but that makes sense).

Definition
Given a locale Awe have a notion of a sheaf on it.

For C ∈ cAlg(PrLst), there is a sheaf on Specbig(C) given by taking A ∈ Idem(C) to C/〈A〉.

Remark.We don’t know what Specbig(C) looks like. Even for C = D(R), we do not know if it is spatial.

Remark. Specbig C does not determine C. Take C = D(K) whereK is a field.

Definition
A categorified locale consists of

1. X is a locale

2. C ∈ cAlg(PrLst)

3. f : Specbig C → X a morphism of locales.

A morphism of categorified locales is what you think it is. [Cam24b, Def.2.2.6.]

Example : (A,A+) be a Tate-Huber pair. Let C := D((A,A+)�). For each f ∈ A(∗), we have Z[T ]→ A, T 7→
f . Then using the morphism of tensor categories

D((Z[T ],Z)�) ⊗−−→ D((A,A+)�)

we get idempotent algebras in D((A,A+)�).

A⊗�Z[T ] Z((1/T )) A⊗�Z[T ] Z[[T ]]

Take the subframe generated by all of these.

Observation : Z((1/T )),Z[[T ]] are compact in solid modules over Z[T ], which implies they are compact as
idempotent algebras. This implies the subframe/locale they generate defines a spectral space. There is a
duality between spectral spaces and distributive lattice generated under compact objects stable under finite
limits.

Proposition

4



The above subframe is precisely Spa (A,A+). For Z[T ]→ A, T 7→ f ∈ A(∗),

A⊗�Z[T ] Z((1/T )) |f | ≤ 1

A⊗�Z[T ] Z[[T ]] |f | ≥ 1

Proof. Need to calculate points in the locale. A point is a locale morphism {0, 1} → Specbig C. One can use
this to define a valuation. The purpose of a valuation is to know for f, g ∈ A whether |f | ≤ |g| or |g| ≤ |f |.
So first restrict to g 6= 0 then “ask yes or no” for |f/g| ≤ 1.

Can dowith usual modules and get opposite of Zariski spectrum. Berkovich spectrum can also be recovered
for by using overconvergent algebras.

2 Dagger-nilradicals andbounded affinoid rings I (Emanuel Reinecke)
Goal of workshop : For X rigid space over Qp, we want to associate an “analytic stack”

A bounded affinoid ring 7→ X(A†red)

where A†red = A/Nil†(A).

Setup :

– work in the∞-category of animated Z�-algebras cAlg(D(Z�)).

– Fix (R,R+) := (Z((π)),Z[[π]]) and R� := (R,R+)�. Intuitively, this takes π-completion.

First, topologically nilpotent and power bounded elements.

Idea : For A animated Z�-algebra, then as the underlying condensed ring should satisfy for S extremally
disconnected, A◦◦(S) := {f : S → A s.t. ∀s1, s2, · · · ∈ S, limn→∞ f(s1) · · · f(sn) = 0}.

For A animated R�-algebra, A◦(S) := {f : S → A s.t. ∀s1, s2 ∈ S, {s1, s2} bounded}.

We have an adjunction :

⊕
n≥0 SymnZ[S] Z[S] S ext.dis.

Cond(AniRing) D≥0(Z)
forget
⊥

Sym

where SymnZ[S] := (ZS⊕n)Sn
= Z[SnSn

] = N[S]=n. Here SnSn
:= Sn/Sn quotient in the topos of condensed

sets. Also N[S]=n = continuous maps to discrete N such that the image sums to n.

Can do the same for A = Z�, R�.
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Example : For S profinite, we have C(S,Z) =
⊕

i∈I Zei. (in notes on condensed sets). Then Z�[S] =∏
i∈I Ze∨i . This leads to

Symn
Z�

Z�[S] =
∏

α∈In/Sn

Z(e∨≤α)

Definition
Let S profinite set.

1. Z�[[N[S]]] := lim←−n≥0
(Z�[N[S]]/SymnZ�[S])

2. R+
�〈N[S]〉 := lim←−n≥0

(R+/πn)�[N[S]]. Note that the (R+/πn)�[N[S]] are symmetric algebras over
(R+/πn)� on S.

3. R�〈N[S]〉 := R+
�〈N[S]〉[1/π].

Definition 1. For A animated Z�-algebra,

A◦◦ : S ext.dis. 7→ MapAniAlgZ�
(Z�[[N[S]]], A)

Note Z�[N[S]]→ Z�[[N[S]]] epi implies we have monomorphism of condensed sets A◦◦ → A.

2. For A animated R� algebra,

A◦ : S ext.dis. 7→ MapAniAlgR�
(R�〈[N[S]]〉, A)

Fact : Z�[[N[S]]] and R�〈N[S]〉 are idempotent algebras over Z�[N[S]] and R�[N[S]]. This implies A◦◦, A◦
are full condensed subanima of A. i.e. in condensed anima we have

A◦ A

π0A
◦ π0A

y

and similarly for A◦◦.

Consequently Z�[[N[S]]] and R�〈N[S]〉 have cocommutative comultiplication from s 7→ s⊗ 1 + 1⊗ s.

Example : Given A Tate-Huber ring, then choosing a pseudo-uniformizer gives a condensed R�-algebra.
Then A◦◦, A◦ gives the classical notions, independent of the choice of pseudo-uniformizer. At the level of
elements, A◦ ∗ (∗) ⊆ A(∗) is the subset of R[T ]→ A that extends along R[T ]→ R〈T 〉. Similarly for A◦◦ and
along Z[T ]→ Z[[T ]].

Question from audience : the extension data or property? Answer : Should be property because of A◦◦, A◦
being full condensed subanima of A.
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Definition
Let A be an animated R�-algebra,

1. Ab := A◦[1/π] is the condensed animated subring of bounded elements of A.

2. A is bounded when Ab → A is an equivalence.

Example : Let A0 be a π-adically complete animated R+
�-algebra. Then A = A0[1/π] is bounded.

Proof. WLOG A is π-torsion-free. STS we have extensions

S A0 A

R+[N[S]]

R+〈N[S]〉

R〈N[S]〉

⊆

The first exists by π-adic completeness of A0.

Example : A Tate-Huber. Then A = A0[1/π] for some π-adically complete ring of definition A0. Then A is
bounded as a R�-algebra using π as choice of pseudo-uniformizer.

Example : R�[T ] not bounded.

R�[T ] R�[T ]

R�〈T 〉

T 7→πnT

6∃

Example (not in original talk, but I find quite helpful) : Classically, for affinoids A over Qp, we have A =⋃
n≥0 p

−nA◦ which is indeed A◦[1/p]. We can rephrase this in terms of module maps. That is, for every
f ∈ A, which we can reinterpret as a Qp-vector space map, then there exists n ≥ 0 such that we have a
factoring
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Qp A

Qp A

Qp〈T 〉

17→f

pn pn

17→f

17→T ∃

where the top square is in Qp-vector spaces and the dashed diagonal is a morphism of affinoids over Qp. The
following criterion (2) is the generalisation of this to families of elements parameterised by a profinite set.

Proposition – Criteria of boundedness
Let A animated R�-algebra. Then

1. A bounded iff π0A bounded.

2. A bounded iff there exists Si profinite and
⊕

iR�[Si]→ A such that

(a) surjective on π0

(b) (A = A◦[1/π]) for all i there exists n such that we have a factoring :

R�[Si] A

R�[Si] A

R�〈N[S]〉

πn πn

∃

Note that the square is happening in D(R�) and the factoring we require is a morphism of
animated condensed R�-algebra.

Proposition
The infinity category of bounded animated R�-algebras admits all small colimits and small limits.

1. colimits are computed in the infinity category of animated R�-algebras

2. limit of a system Ai is (
lim←−
i∈I

A◦i

)
[1/π]

where the limit is in animated condensed R◦-algebras. a

aThe example of increasing union of closed disks gives the interpretation as bounded functions.
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Proof. Idea for tensor products : Take π0(B ⊗A C) where B ← A → C in bounded animated R�-algebras.
Then use criterion (2).

3 Dagger-nilradicals andbounded affinoid rings II (EmanuelReinecke)
Idea for †-nilradical : For A animated R�-algebra, then Nil†(A) should be set of a ∈ A(∗) such that for all
n ≥ 0, π−na is power bounded.

Definition
For S profinite set, define R� {N[S]}† as the colimit of

R�〈N[S]〉 π−−→ R�〈N[S]〉 π−−→ · · ·

Note to self : intuitively, intersection of closed disks of radius |π|n as n→∞.
Remark. 1. has cocomutative comultiplication induced by s 7→ 1⊗ s+ s⊗ 1.

2. Exists R� {N[S]}† → R�〈N[S]〉 ⊗R�
R� {N[S]}† with s/πn 7→ s⊗ (s/πn). Note : these are all static.

3. R� {N[S]}† idempotent R�[N[S]]-algebra.

Definition
For A animated R�-algebra,

Nil†(A) : S ext.dis. 7→ MapAniAlgR�
(R� {N[S]}† , A)

Proposition
(3) implies Nil†(A) is a full condensed subanima of A. (1) and (2) together imply it is full condensed
Ab-ideal. a

aIt was not obvious to me what an ideal was in the animated setting. Thankfully, someone provided a reference. [Mao24]

Definition
Let A be a bounded animated R�-algebra.

1. A†red := CoFib(Nil†(A)→ A) in D(A).

2. A is called reduced when A→ A†red is equivalence.

Proposition
A†red is static and thus has an obvious ring structure.
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Proof. Nil†(A) ⊆ A full subanima implies the same morphism in D(A) induces isomorphism on Hi with
i < 0.12 It follows from the LES of cohomology that This implies A†red is static. We thus have A†red as a
quotient of π0A in static modules. So we have ring structure by hand.

Example : For A animated R�-algebra with π0A separated π-adically, then π0Nil†(A) = 0.

Proof. All maps R�〈N[S]〉 → A must factor through some R�〈N[S/πn]〉 → A◦. Then πn divides the image
S → π0(A◦) for all n. So it’s zero by π-adically separated.

Example : A = K〈T1, . . . , Tn〉/I for K NA field. Then Ared is π-adically separated. This implies Nil†(A) ⊆
Nil(A), the usual algebraic nilradical. Of course, the other inclusion is true, and thus Nil†(A) = Nil(A).

Example : A Tate-Huber ring, I ⊆ A ideal, I topological closure. Assume (A/I)◦ is π-adically separated. So
Nil†(A/I) = I/I .

Now for affinoid rings, recall that an analytic ring A is a pair (A,D(A)) where A is an animated condensed
ring and D(A) is a full subcategory of D(A) such that certain conditions. Point is, suffices to specify A and
“free complete objects”, a functor on ext.dis. to D(A) with natural transformation

A[S] A[S]

S

We will assume A is “complete”, meaning A[∗] ' A.

Examples : A ring finite type then A�[S] := lim←−iA[Si] where S = lim←−i Si with Si finite gives an analytic ring
structure on A.

For general rings A, A�[S] := lim−→A′→AA
′
�[S] where A′ → A ranges over finite type rings mapping into A.

Example : A animated Z�-algebra and A+ ⊆ π0(A◦)(∗) a subring, assume A complete in (A,A+)�. We
get an analytic ring structure on (A,A+)�. Emanuel does not describes this in general but for static A, the
definition (A,A+)�[S] := A[S]⊗A+ A+

� works. 3

Definition
Let A = (A,D(A)) be an analytic ring over Z�. Then

1. A+ := MapAniRing�
(Z[T ]�,A) ⊆ Map(Z[T ]�,A) = A(∗).

2. Define A◦◦,A◦,Ab by the corresponding thing for A.

1Cohomological convention.
2I guess an argument for this is that this is true iff forget to derived category of condensed abelian groups. Then use Dold–Kan (i.e.

the abelian group structure) to see thatHi<0 is independent of base point in A, whether in Nil†(A) or not.
3This formula should work, but does not quite work on the nose, as a member of the audience points out.
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Fact : A+ ⊆ A(∗) is a subanima so we get ring structure on A+.

Example : For (A,A+) Tate-Huber pair we have an analytic ring A := (A,A+)� with A+ = A+. (Andrey-
chev)

Definition
A solid affinoid ring is an analytic ring A/Z� such that (A, π0A+)� → A is an equivalence.

Counterexample : ultrasolid rational numbers = complement of the idempotent Z�-algebra Ẑ =
∏
p Zp is

not solid affinoid. (See Clausen-Scholze.)

Example : Z[T ]� with A+ = Z[T ].

Example : Z�[N[S]] with A+ = Z.

Proposition 1. Given A solid affinoid over Z�, then A◦◦ is a solid A+
�-module.

2. Given A solid affinoid over R� a then

(a) A◦ is a solid A+
�-algebra

(b) Ab is a solid A+
�-algebra

(c) Nil†(A) is a solid Ab-module and hence Nil†(A) ⊆ Ab is a full subanima ideal.
aI guess implicitly there’s an analytic ring structure on R� as well.

Proof. Apparently just diagram chases.

Definition
Let A be a solid affinoid ring over R�. Then we say A is bounded when A is a bounded animated
R�-algebra.

Now assume A is bounded. Give A†red the analytic ring structure by declaring M ∈ D(A†red) to be
complete when they are N ⊗LA A†red for some N ∈ D(A). This defines A†red.

We declare A to be †-reduced when A → A†red is an equivalence.

We have fullsubcategories : reduced inside bounded inside affinoid.

Example : (A,A+) Tate-Huber pair. Then (A,A+)� is a bounded affinoid ring over R�.

Proposition
AffRingbR�

is stable under small colimits, finite products in the infinity category of analytic rings over
R�.

Proof. Tensor products : Analytic rings over R� have tensor products. To check the underlying animated
condensed ring is bounded, use criterion (2) from before again.
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Proposition
We have the following :

1. Solid affinoid structures are independent of Nil†, in the sense that for A ∈ AffRingbR�
,

R�[T ] A A†red

R〈T 〉� R� ⊗ Z[T ]�

∃⇔ ∃

:=

2. _†red is idempotent.

4 Derived Tate spaces I (Anschütz)
R continues to be (Z((π)),Z[[π]])�. Aim : for A ∈ AffRingbR�

, construct δA : Specbig D(A) → |SpaA|
where the latter is a spectral space, defining a categorified locale SpaA := (D(A), |SpaA| , δA). This should
generalise the one for classical Tate-Huber pairs (A,A+).

Recall, for classical Tate-Huber pairs,

Spa (A,A+)→ Specbig(D((A,A+)�))

{|f | > 1} 7→ Z((1/T ))⊗Z�[T ],T 7→f (A,A+)�

{|f | < 1} 7→ Z[[T ]]⊗Z�[T ],T 7→f (A,A+)�

these all land in bounded affinoid algebras over R�.

Example : For A := (R〈T 〉, R+〈T 〉)�, we have an idempotent algebra R〈T 〉[1/T ] which is not bounded.
Geometrically, the corresponding open is the non-affine subspace given by formal completion at the origin.

Definition
Let A ∈ AffRingbR�

. We define |Spa A| as follows. For I ⊆ π0A◦ finite subset, it induces

(R〈TI〉, R)� → A, Ti 7→ i

which induces
Specbig D(A)→ Specbig(R〈TI〉, R)� →

∣∣Spa cl(R〈TI〉, R)
∣∣

where the final spectral space is the classical adic spectrum. We now take inverse limit along all finite
subset I ⊆ π0A

◦.
ρA : Specbig D(A)→ τA := lim←−

I⊆π0A◦

∣∣Spa cl(R〈TI〉, R)
∣∣

where the latter limit in locales. a

aIt turns out in this situation, this is also the limit in spectral spaces.
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Proposition
There exists a maximal open subspace U ⊆ τA in the constructible topology such that ρA factors into a
surjective map of locales.

δA : Specbig D(A)→ τA \ U := |Spa A|

Question from audience : What is a surjection of locales? Anschütz : I will get to it.

We can work in a more general context : C ∈ cAlg(PrLst) with ⊗ preserving compact objects, with compact
unit, and ρ : Specbig C → τ with τ spectral space. We further assume Z ⊆ τ closed and constructible, then
A(Z) := ρ−1Z ∈ C is compact. Then there existsmaximal subspaceU ⊆ τ open in the constructible topology
such that ρ factors as Specbig C → τ \ U .

Anschütz goes on to construct U in this generality. Idea : t ∈ U are the points which contribute nothing in
terms of C. Involves defining for V ⊆ τ constructible, a quotient j∗V : C → CV such thatj∗V is

1. j∗V is symmetric monoidal and j∗,V commutes with colimits.

2. the natural quotient if V is open

3. A(V )⊗ _ if V is closed

4. CV ∩W = CV ⊗C CW .

Then one can define the “stalk category” for t ∈ τ ,

Ct := lim−→
t∈V constructible

CV

Then U := {t ∈ τ s.t. Ct = 0}. Anschütz then proves this this gives the desired result. The surjectivity is in
the sense that for Z,Z1 ⊆ |SpaA| closed subspaces, to check Z = Z1 it suffices to check δ−1

A Z = δ−1
A Z1.

Now we assume C := D(A) whereA ∈ AffRingbR�
. One can check the conditions by reducing to the case of

usual adic spaces.
Remark. For x ∈ |Spa A|, we had D(A)x := lim−→x∈V D(A)V where V is constructible. It turns out D(A)V =

D(AV ) for some bounded affinoid ring AV . Furthermore,

lim−→
x∈V

D(A)V ' D( lim−→
x∈V
AV )

where A(x)cons := lim−→x∈V AV is called the constructible stalk. The adic stalk is analogous, but only along
rational neighbourhoods.

Take example of x ∈ Spa cl(R〈T 〉, R+) \ Spa cl(R〈T 〉, R+〈T 〉). Then A(x)cons = R〈T 〉 ⊗Z[T ] Z((1/T )). Con-
cretely, this is the ring of

∑
n∈Z rnT

n where

1. rn → 0 as n→ −∞

2. rn bounded as n→∞.

Question from audience : is there a similar description for the adic stalk in this example?

Anschütz : Not that I know of.
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5 Six functor formalisms I (Lukas Mann)
Definition
A geoemtric setup consists of

1. (Spaces) C an∞-category with finite limits

2. E a class of morphisms in C such that

(a) stable under composition

(b) stable under pullback. More precisely givenX → S in E and T → S thenX ×S T → T is in
E.

(c) diagonals meaning for all X → S we have X → X ×S X is in E. Equivalently under the
previous assumptions, givenX → Y → S withX → S and Y → S in E thenX → Y is also.

A morphism of geometric setups (C, E)→ (C′, E′) consists of a functor F : C → C′ such that

1. F (E) ⊆ E′

2. F preserves pullbacks in E

Definition
Let (C, E) be a geometric setup. Let Corr(C, E) be the following symmetric monoidal∞-category : a

– Objects are those of C.

– Corr(C, E)(X,Y ) are correspondences X ← Z → Y where Z → Y is in E.

– Composition is given by fiber product of correspondences.

– for X,Y ∈ Corr(C, E), define X ⊗ Y := X × Y .
aFor the talk, we will only describe objects and morphisms. See, for example Scholze’s notes, for precise definition as an

∞-category.

Remark – Variant not in Juan’s paper. Suppose we have I, P ⊆ E such that (C, I), (C, P ) also give geometric
setups. Then there is a (∞, 2)-category CorrP,I(C, E) where a 2-morphism is

X

Z W Z1

Y

∈E

∈I ∈P

∈E

Definition
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A 3-functor formalism on a geometric setup (C, E) is a lax symmetric monoidal functor

D : (Corr(C, E),⊗)→ (∞Cat,×)

From such D we can derive the following data :

– (“sheaves”) for each X ∈ C an infinity category D(X)

– Given f : X → Y , f∗ : D(Y )→ D(X) given by image of Y ← X = X .

– Given f : X → Y in E then f! : D(X)→ D(Y ) given by image of X = X → Y .

– D lax monoidal andX ∈ C commutative algebra induces a commutative algebra structure onD(X) in
(∞Cat,×). Furthermore f∗ is symmetric monoidal for all f .

– Base change for E.

– Projection formula for E.
Remark. This is not agreedupon in the literature, however there should be a notion of lax symmetricmonoidal
functor of (∞, 2)-categories. Then a 3-functor formalism for (C, E, P, I) will be a lax symmetric monoidal
functor

D : CorrP,I(C, E)→∞Cat

such that

1. For j ∈ I then j! a j∗.

2. For f ∈ P then f∗ a f!.

with fixed units and counits for the above adjunctions.

Definition
A 6-functor formalism is a 3-functor formalism D on (C, E) such that the right adjoints of f∗, f! exist
and each D(X) is closed symmetric monoidal.

Proposition – In progress
Let (C, E) be a geometric setup, I, P ⊆ E a suitable decomposition, meaning

1. (C, I), (C, P ) are geometric setups

2. All f ∈ I ∩ P then f is truncated. a

3. Every f ∈ E can be written as f = piwhere p ∈ P and i ∈ I .

Then the restriction on

Fun⊗,lax(CorrP,I(C, E),∞Cat)→ Fun⊗,lax(Cop,∞Cat) ' Fun(Cop, cAlg(∞Cat))

is fully faithful (on the underlying ∞-category?) and the essential image consists of D : Cop →
cAlg(∞Cat) such that

1. For j ∈ I , j∗ has left adjoint j! with base change and projection formula.

15



2. For p ∈ P , p∗ has right adjoint p! with base change and projection formula.

3. p! and j∗ in the above are compatible in the sense that for all

Y X

T S

j′

f ′
y

f

j

then the induced morphism f ′! j! → j′!f! is an equivalence.
aFrom audience : This is fine for (n, 1)-categories for all n <∞.

Definition
Let D be a 3-functor formalism on (C, E).

1. A family (Ui → X)i is a universal ∗-cover when D∗ : Cop →∞Cat descends universally along it.
a

2. A family (Ui → X)i in E is a universal !-cover when D! : Cop
E →∞Cat descends along it. b

aD(X) is the totalisation of D applied to the Cech nerve of (Ui → X)i and also for any base change of the cover along any
Y → X .

bMann cheated a bit here. See Scholze’s notes, definition 4.14 for the fine print.

Proposition
LetD be a 6-functor formalism on (C, E)with values inPrL. Assume C is equippedwith a subcanonical
site structure τ andD∗ descends along τ -covers. Then there exists a geometric setup (X , E′) satisfying
the following :

1. X := Sh(C, τ)

2. E′ is ∗-local on target : For f : Y → X in X in E′ after pullback along every object in C then f is
in E′.

3. E′ is !-local on source and target. (If f is in E′ after passing to universal !-covers of the source or
target then f ∈ E′)

Example : C = Sh(ProFin,∞Grpd) = CondAni. D = D(_,Λ) Λ-valued sheaves. E′ is “Λ-fine” maps. This
includes

1. maps between manifolds

2. maps ∗/G→ ∗/H for qcqs G,H , or p-adic Lie groups.

Example : C = stacks on schemes, D(X) := Dét(X,Λ) where Λ is a torsion ring.

Example : C = analytic stacks, D is quasi-coherent sheaves.
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6 Algebraic topology from the six functor point of view (Lars Hessel-
holt)

(Writing C too tiring so I switched to C. Also, I was unable to follow this lecture well so there may be more
mistakes in this section, I apologise.)

We take D : Corr(C,E)→ PrL lax symmetric monoidal. Then we have lax symmetric monoidal :

Cop Corr(C,E) PrL

which induces
cAlg(Cop)→ cAlg(Corr(C,E))→ cAlg(PrL)

Let S ∈ C be final. Then given f : X → S and V ∈ D(S),

1. f∗f∗(V ) is called cohomology of X with coefficients in V

2. f!f
∗(V ) is called cohomology of X with compact support and coefficients in V

3. f∗f !(V ) is Borel–Moore homology of X with coefficients in V

4. f!f
!(V ) is homology of X with coefficients in V .

Cohomology is functorial in spaces. At least, given

Y X

S

f

q
p

then we have
p∗p
∗(V )→ p∗f∗f

∗p∗(V ) ' q∗q∗(V )

How can we make this functorial?

Proposition
Let C ∈ ∞̂Cat. a

1. The assignment
(C f−−→ D) 7→ (C f∗f

∗
−−−−→ C)

promotes to a functor (
∞̂Cat

L
)
C/

→ Fun(C,C)

2. The assignment
(D f!−−→ C) 7→ (C f!f

!

−−−→ C)

17



promotes to a functor (
∞̂Cat

L
)
/C

→ Fun(C,C)

aLarge∞-categories.

Remark. [Lur08, Remark 7.1.6.6] says the above is possible, but does not provide a proof.

For C := Ani with X ∈ Ani, D(X) := Fun(X,Sp). Then f!, f∗, f
∗, f ! can be described as Kan extensions.

f : X → Y  Fun(X,Sp) Fun(Y,Sp)

f∗

f!

⊥

⊥

f !'f∗

Note to self : This is completely analogous to the triple of adjoints where X,Y are categories and one has
Set instead of Sp.

Corr(Ani) D−−→ PrLst

1. I all maps

2. P maps with fibers which are compact projective anima, A.K.A. finite sets

Proposition – Generalised Mayer–Vietoris
The functor

Aniop Fun(Sp,Sp)

(p : X → 1) p∗p
∗

takes colimits in Ani to limits in Fun(Sp,Sp).

Proof. LetX : K. → Ani be a colimit diagram and let 1 : K. → Ani be the terminal diagram. Let p : X → 1
be the unique map. We want to show

(Kop)/ ' (K.)op p∗p
∗

−−−−→ Fun(Sp,Sp)

is a limit diagram. Equivalently, for all V ∈ Sp,

(Kop)/ p∗p
∗(V )−−−−−−→ Sp

is a limit diagram. By Yoneda, it suffices to show that for allW ∈ Sp, the diagram of anima

18



(Kop)/ Ani

Map(W,p∗p
∗V )'Map(p∗W,p∗V )

is a limit diagram. But D∗ : Aniop → PrLst preserves limits and mapping anima in a limit of∞-categories is
the limit of the mapping anima, since

Map(Y,X) Fun(∆1, C)

1 C × C

y

(Y,X)

Proposition – Universal coefficient theorem
For V ∈ D(S) we have

Map(f!f
!(1), V ) ' f∗f∗V

Proof.

Map(f!f
!1, V ) ' Map(f !1, f !V )

' Map(f !1⊗ f∗1, f11⊗ f∗V )

' Map(f∗1, f∗V )

' f∗f∗V

where we used f smooth implies f !(_) ' f !1⊗ f∗(_). The object f !1 is invertible.

There are two dualities in algebraic topology. Smooth duality concerns “conorm” map

f !1⊗ f∗(_)→ f !(_)

defined to be the mate / adjunct of

f!(f
!1⊗ f∗(_)) ' f!f

!1⊗ _ ε−→ _

Proper duality conerns the norm map

f!(_⊗ p2∗∆!1) Nmf−−−−→ f∗(_)

defined as the mate / adjunct of

f∗f!(_⊗p2∗∆1(1)) ' p1!p
∗
2(_⊗p2∗∆!(1)) ' p1! (p∗2(_)⊗ p∗2p2∗∆1(1)) ε−→ p1! (p∗2(_)⊗∆1(1)) ' p1!∆!∆

∗p∗2(_) ' _

where
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Y

Y ×X Y Y

Y X

∆

p1

p2 f

f

The object p2∗∆!(1) is called the Klein–Spivalz dualizing object. Poincaré duality in algebraic topology is
proper duality, not smooth duality.

Lu–Zheng magic :

Corr(C) ModD(S)PrL

KD,S

D

D′ D′′

In Corr(C) the mapping object is Map(X,Y ) ' X ×S Y .

1. KD,S has same objects as CorrC but for hom Y to X is D(X ×S Y ).

2. D′′ does the same as D on objects but on homs gives

D(X ×S Y )→ FunLD(S)(D(Y ), D(X))

K 7→ p1!(p
∗
2(_)⊗K)

Definition – Mann
Let f : X → S and P ∈ D(X).

1. P is f -smooth when P as a morphism X → S inKD,S is a left adjoint.

2. P is f -proper when P as a morphism X → S inKD,S is a right adjoint.

The above uses thatD′′ preserves adjunctions, which itself comes fromD′′ secretly being a functor of (∞, 2)-
categories.

What does this look like? For f -smooth P ,

X S  D(X) D(S)
P

Q

f!(_⊗P )

f∗(_)⊗Q

f!(_⊗ P ) has Map(P, f !_) as right adjoint. So if P has Q as right adjoint then

Map(P, f !(_)) ' f∗(_)⊗Q
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For f -proper P ,

X S  D(X) D(S)
Q

P f!(_⊗P )

f∗(_)⊗Q

f∗(_)⊗Q has f∗(Map(Q, _)) as right adjoint. So if Q is left adjoint of P then

f∗(Map(Q, _)) ' f!(_⊗ P )

A useful result (Heyer–Mann) : Pointwise criterion for adjoints inside a (∞, 2)-category.

The above implies the property of f : X → S that the norm map

f!(_⊗ p2∗∆!(1)) Nmf−−−−→ f∗(_)

being an equivalence is stable under base change along any g : S′ → S.

Exercise : Show that if f : Y → X a morphism of anima has compact fibers, then Nmf is an equivalence.
(Hint : Begin with finite fibers.)

7 Derived Tate spaces II (Anschütz)
Proposition
Let A→ B in AffRingbR�

.

1. |Spa A| is a spectral space, with topological basis given by rational subsets. (Rational subset =
pullback of rational subset along |Spa A| →

∣∣Spa cl(R〈TI〉, R+)
∣∣where I ⊆ π0A

◦ finite subset.)

2. |Spa B| → |Spa A| spectral map. In fact, pullback of rational subsets are rational subsets.ab

3. If A = (A,A+)� with (A,A+) a classical Tate–Huber ring, then |Spa (A,A+)�| '
∣∣Spa cl(A,A+)

∣∣.
aClear from construction.
bIn classical adic spaces, the underlying topological morphism is generalising. However, this is false in the generality for

bounded affinoid rings.

Proof. Uninteresting.

Definition
Let A ∈ AffRingbR�

and x ∈ |SpaA|.

1. The residue field of A at x is defined as

κ(x) := A(x)†red
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2. The constructible residue field of A at x is

κ(x)cons := A(x)†red
cons

Proposition
Let A ∈ AffRingbR�

. TFAE :

1. the open subsets of |Spa A| form a totally ordered set and non-empty.

2. |Spa A| has a unique closed point x

3. |Spa A| 6= ∅ and for f, g ∈ π0A \ π0Nil†(A), then either {|f | ≤ |g| 6= 0} or {|g| ≤ |f | 6= 0} is equal
to all of |Spa A|.

Adic stalks of bounded affinoid rings satisfies these conditions and the residue and constructible residue
fields are indeed fields.

Proof. (1⇒ 2) ok. (2⇒ 3) |Spa A| is the only open neighbourhood of x.

Claim : π0A is local with maximal ideal π0Nil†(A). Let f ∈ π0A \π0Nil†(A). If x ∈ {|f | ≤ |π|n} for all n then
|Spa A| = {|f | ≤ |π|n} for all n. This implies R[T ] → A, T 7→ f extends to R {T}† → A i.e. f ∈ Nil†(A).
The argument for classical Tate–Huber pairs is intuitive. This lifts to a proof for our case by construction of
|Spa A|. This implies there exists n such that x /∈ {|f | ≤ |π|n}. Then |Spa A| = {|f | ≥ |π|n}, which implies
f ∈ (π0A)×.

Now take f, g as in (3). Then consider {|f/g| ≤ 1} ∪ {|g/f | ≤ 1}. Then x is in one of these. Then |Spa A| is
whichever it is.

(3⇒ 1) Skipped.

Proposition
Let A ∈ AffRingbR�

. TFAE :

1. |Spa A| is a point

2. |Spa A| has a unique closed point x and f ∈ π0A, either f ∈ A+ or (f ∈ A× and 1/f ∈ A◦◦).

Constructible stalks of bounded affinoid rings satisfies these properties.

Proof. Uninteresting.

Proposition
Let (Ai)i be a sifted diagram in AffRingbR�

with colimit A. Then

|Spa A| α−−→∼ lim←−
i

|Spa Ai|
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in topological spaces.

Proof. Key observation : A(∗) = lim−→i
Ai(∗) because the point is a compact projective in condensed sets.

By the construction of |Spa A|, any constructible subset is the pullback of some constructible subset in some
|Spa Ai|. This impliesα injective. Surjectivity follows formally fromkey observation applied to constructible
stalk.

Proposition
Let A → B in AffRingbR�

, such that B = BA/ meaning it has the induced analytic ring structure from
A. Also assume π0A → π0B is surjective. Then |SpaB| → |SpaA| is an immersion. In fact, with
I := Fib(A→ B) is generated by π0I(∗) and the image of |SpaB| = {|f | = 0 s.t. f ∈ I}.

The above applied in particular to A→ A†red so that |SpaA| =
∣∣SpaA†red

∣∣.
Definition
Define AffbR�

:= (AffRingbR�
)op. ForA ∈ AffRingb�, we write AnSpecA for the corresponding opposite.

A family (AnSpecAi → AnSpecA)i is an analytic cover when

1. each AnSpecAi → AnSpecA is a categorical open immersion.

2. AnSpecAi → AnSpecA are pulled back from rational subsets Ui ⊆ |SpaA| such that
⋃
i Ui =

|SpaA|.

This defines a Grothendieck site on AffbR�
, which is in fact subcanonical.

A derived Tate space is a sheafX over AffbR�
in the analytic topology such that there exists a family of

representable open subsheaves which maps jointly effective-epimorphically onto X .

Question to Anschütz : Is (AnSpecAi → AnSpecA)i covering on adic spectrum equivalent to D(A) →∏
iD(Ai) descendable?

Anschütz : No I don’t expect it to be equivalent. But we will see in later talks that it will satisfy ∗-descent.

There was a remark by Anschütz about how the above, by allowing categorical open immersions rather than
just rational opens, we are actually allowing more ways to glue than Tate adic spaces in Huber’s original
theory.

8 Abstract 6-functor formalisms II (Lucas Mann)
In this talk, always assume E consists of all morphisms.

Definition
Let D be a 3-functor formalism on C. For S ∈ C we let KD,S be the (∞, 2)-category obtained by
transferring the self-enrichment of CorrC along D. Explicitly :

1. objects = C/S
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2. Hom(Y,X) = D(X ×S Y )

There are natural (∞, 2)-functors

C/S → Corr(C/S)→ KD,S
Hom(S,_)−−−−−−−→∞Cat

Definition
A morphism f : Y → X in an (∞, 2)-category K is a left adjoint when there exists g : X → Y and
2-morphisms η : 1Y → gf and ε : fg → 1X such that there exists commuting trianglesa

f fgf g

f gfg g

fη

idf

εf ηg
idg

gε

aTechnically, the commutation is data. Butwe are only asking for existence. It turns out that it ismore or less unique, according
to Lucas Mann.

Example : Let C be a symmetric monoidal∞-category. K := BC the (∞, 2)-category with one object ∗ and
Hom(∗, ∗) = C. Then TFAE for P ∈ C :

1. P is a left adjoint inK

2. P is left dualizable in C

3. P ⊗Hom(P, 1) ∼−−→ Hom(P, P ).

Definition
Let D be a 3-functor formalism on C, f : X → S and P ∈ D(X).

1. P is f -suave when it is a left adjoint as a map X → S inKD,S . (Note HomKD,S
(X,S) ' D(X).)

2. f is D-suave when 1 ∈ D(X) is f -suave.

3. P is f -prim when it is a right adjoint as a map X → S inKD,S .

4. f is D-prim when 1 ∈ D(X) is f -prim.

Note to self : suave = smooth, prim = proper. 1

Proposition
Let D be a 3-functor formalism on C.

1. f -suave and f -prim are ∗-local on the target. If D is compatible with colimits (D(X) has small
colimits for all X and f∗, f! preserves them), then being suave is suave local on the source.

1Mann called these relatively dualisable and proper. Then Scholze replaced with smooth and proper. But étale and proper are dual.
So Camargo called them smooth and co-smooth. But suave is like smooth except dualizing complex is not invertible. So people decided
to just use completely different words. Suave is due to Scholze and prim is due to Hansen.
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2. Passing to adjoint morphisms defines dualities SDf and PDf

{suave objects}op ∼−−→ {suave objects}

P 7→ Hom(P, f !1)

{prim objects}op ∼−−→ {prim objects}

P 7→ p2∗Hom(p∗1P,∆f !1)

3. Suave /S is stable under suave pullback and prim !-pushforward. Explicitly, given

Y X

S

g

h
f

Then g suave implies g∗ : D(X) → D(Y ) sends f -suave to h-suave. Also g prim implies g! :
D(Y ) → D(X) sends h-suave to f -suave. Similarly, prim /S is stable under prim pullback and
suave !-pushforward.

4. If f suave then
f∗ ⊗ ωf ∼−−→ f !

f∗ ∼−−→ Hom(ωf , f
!)

where ωf := SDf (1) = f !1. If f is prim then

f!
∼−−→ f∗Hom(δf , _)

f!(δf ⊗ _) ∼−−→ f∗

where δf := PDf (1) = p2∗∆!1. (Codualising complex.)

5. If f is suave then dualizable in D(X) implies f -suave. If ∆f suave then the converse is true.

Same for prim.

6. Suppose 1 ∈ D(S) is compact. Then f -prim implies compact.

7. If P ∈ D(X) is f -suave and Q ∈ D(X) is f -prim then

f∗Hom(Q,SDfP ) = (f∗Hom(PDfQ,P ))∨

where _∨ = Hom(_, 1) in D(S).

Proof. Uninteresting. All formal 2-categorical arguments.
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Proposition – How to detect !-covers 1. Every suave ∗-cover is a universal !-cover.

2. Let g : Z → Y be descendable covers, i.e. g is prim and g∗1 ∈ D(Y ) is descendable. Then g is a
universal !-cover.

Moreover for f : Y → X , then P ∈ D(Y ) is f -prim iff g∗P is fg-prim.

Definition
f is D-smooth when f is suave and ωf is invertible. a

f is D-cosmooth when f is prim and δf is invertible.

f is D-étale whern it’s truncated and f with its iterated diagonals are suave. (This turns out to imply
ωf ' 1 and f ! = f∗.)

Similar for D-proper. (Implies δf = 1 and f! = f∗.)
aUnder f suave, ωf invertible iff ωf dualizable.

Example : In CondAni, D = D(_,Λ), then all Λ-fine maps between compact Hausdorff spaces are proper,
topological manifolds are smooth (checking this reduces to R). Open immersion are étale.

If X is locally compact Hausdorff, then P ∈ D(X,Λ) is prim for X → ∗ iff P is compact iff P is locally
constant with perfect1 stalks and compact support.

Mann : Also, constructible P ∈ D(X) are suave over ∗, but there are conditions on the stratification. Maybe
stratification by manifolds.

If G is a p-adic Lie group, then V ∈ D(∗/G,Λ) is suave over ∗ iff V admissible (i.e. V K perfect for small
enough compact openK ⊆ G). Similarly, V is prim over ∗ iff V is compact.

Example (the original motivating) : For Dét, f -suave iff f -ULA. In [FS24], only a related honest 2-category
is used.

Example : For f : X → Smorphism of schemeswith S finite type, then f -suave objects inD�(X) is precisely
CohS(X). “finite tor dimension over S”.

If S regular Noetherian then CohS(X) = Coh(X) = bounded complexes with finitely generated cohomolo-
gies. This allows calculation for suave morphisms in schemes.

9 Tate stacks (Guido Bosco)
AffZ�

:= (AffRingZ�
)op.

Goal : “solid analytic stacks”. But for what Grothendieck topology?

1. Want A 7→ D(A) to desend to a category of “quasi-coherent sheaves” D(X) for each X ∈ AnStack�.

2. Want 6-functor formalism for such quasi-coherent sheaves.
1If Λ = Z, perfect means finitely generated.
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First define 6-functor formalism on C := AffZ�
.

Note to self : Technically, one needs work with a uncountable cut off cardinal κ and do all of the following
for solid affinoids bounded by κ, checking at every step that κ-smallness is preserved and any functor the
same up to enlarging κ.

Definition
A map f : AnSpecB → AnSpecA is proper when f∗ : D(B)→ D(A) satisfies projection formula. Let P
be the class of proper morphisms in C.

Amap j : AnSpecB → AnSpecA is open immersionwhen j∗ admits fully faithful left adjoint j! satisfying
the projection formula. Use I to denote the class of open immersions in C.

Proposition
For f : AnSpecB → AnSpecA, f is proper iff B = BA/ the analytic ring structure induced from A.

Proof. The projection formula says : For allM ∈ D(A) andN ∈ D(B), f∗(f∗M⊗BN) = M⊗A f∗N inD(A).

If B = BA/ then f∗ = _⊗A B and the projection formula follows from (M ⊗A B)⊗B N = M ⊗A (N |A).

Conversely, if we have the projection formula then applying to N = B the underlying A-module of B gives
M ⊗A B = M ⊗A B in D(B). This implies B = BA/.

Remark. This agree’s with Huber’s definition of partially proper upon fully faithfully embedding the 1-
category of Tate-Huber pairs into AffRingZ�

.

Proposition
For j : AnSpecB → AnSpecA, j is an open immersion iff j∗ : D(A) → D(B) is a categorical open
immersion with corresponding idempotent algebra D ∈ D(A) such that Hom(D, _)[1] commutes with
small colimits and preserves (too small)

Consequently, I is stable under composition and pullbacks. Furthermore, for j ∈ I , formation of j!
commutes with base change.

Remark. Generally, D = Cofib(j!1→ 1). Conversely, given D we have j!(_) = Fib(A→ D)⊗ _.

Examples : AnSpecZ[T ]� → AnSpec(Z[T ],Z)� and AnSpec(Z[T±1],Z[T±1])� → AnSpecZ[T ]�. It’s im-
portant to note that in analytic geometry, open immersions are really more like closed immersions in the
classical sense.

Definition
For f a morphism in AffZ�

, f is called !-able when f = pj where j ∈ I and p ∈ P .

Denote the class of !-able morphisms by E.

Example : We have a factorisation

AnSpecZ[T ]� → AnSpec(Z[T ],Z)� → AnSpecZ�
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is a composition of open immersion followed by proper.

Very roughly, !-able corresponds to Huber’s notion of “+ weakly of finite type”.

Proposition
There is an enhancement of the functor

D : C → cAlg(PrL)

to a symmetric monoidal 6 functor formalism

D : (Corr(C,E),⊗)→ (PrL,⊗)

Proof sketch. One shows that (I, P ) is a suitable decomposition for the geometric setup (C,E). Then one can
use the criterion in Lucas’ talk. Checking the conditions is uninteresting.

Recall that for a !-able morphism f : Y → X in AffZ�
, we say it satisfies !-descent whenD(X) is the limit of

the image of the Cech nerve of f under D!.

Proposition – !-descent topology
ForAffZ�

, define !-coverings as finite families (Yi → X)i of !-ablemorphismswith
∐
i Yi → X satisfying

!-descent.

Then AffZ�
with the !-coverings defines a Grothendieck topology.

Proposition 1. If a !-able morphism in C satisfies !-descent, then it satisfies universal *-descent and
universal !-descent. a

2. The !-descent topology on C is subcanonical.
aFor the proof, it is crucial thatD is symmetric monoidal.

Proposition
Let D be a 6-functor formalism with values in PrL on a geometric setup (C,E). Let C be equipped
with a subcanonical Grothendieck topology τ along which D∗ descends. Then there is a geometric
setup (Shτ (C,Ani), E′) such that

1. E ⊆ E′

2. D extends uniquely to this geometric setup

3. E′ is ∗-local on target

4. E′ is !-local on target and source.

We apply this to C = AffZ�
, E !-able, and τ the !-descent topology.

28



Definition
Sh!(AffZ�

,Ani) is the∞-category of solid stacks.

For us, for de Rham stack purposes, we are interested in applying to AffbR�
.

Definition
Sh!(AffbR�

,Ani) is the∞-category of Tate stacks.

Question from Akhil : We can make a comparison by using the reflector A 7→ Ab?

Answer from audience : Yes.

10 Cartier duality for vector bundles I (Mingjia Zhang)

Motivation : Galg
a,dR = Ga/Ĝa over characteristic zero. It will turn out that Ga,dR,R�

= Ga/G†a. Want to study
D(Galg

a,dR) and relate to D-modules. Need to understand

D(BĜa) ∼−−→ D(Ga)

D(Ĝa) ∼−−→ D(BGa)

and their analytic analogue
D(BG†a) ∼−−→ D(Gan

a )

D(G†a) ∼−−→ D(BGan
a )

This is called Cartier duality. 1

We will work in even more restrictive category of solid stacks.

Definition
C := ShD(AffZ�

,Ani) is the∞-category of sheaves w.r.t. the D-topology on AffZ�
. Objects are called

solid D-stacks.

Definition
LetX be a solidD-stack. A rank d algebraic vector bundle onX is F ∈ D(X) that isD-locally free rank
d over 1X .

Definition
[∗/GLd] : Cop → Ani sends X to the∞-groupoid of rank d algebraic vector bundles on X . a

The identity of [∗/GLd] corresponds to a rank d algebraic vector bundle St ∈ D([∗/GLd]). Then for

1“Not explicitly stated” is a nice way of saying “skipped”.
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f : X → [∗/GLd].
aQuestion from audience : is this the quotient in the topos by an actual GLd?
Answer from Zhang : yes, GLd can be defined in usual way over Z�.

Question from Niziol : There are lots of D-covers. Doesn’t this mean there are many vector bundles?

Definition
For X solid D-stack F ∈ [∗/GLd](X),

V(F ) := AnSpec
X

Sym•XF
∨

with induced analytic structure from X .

V̂(F ) := lim−→
n

AnSpec
X

Sym≤nX F∨

a

awhere Sym≤n
X F∨ means the algebra quotient of Sym•XF

∨ by (F )n+1.

Remark.
HomX(Symn

XF
∨, 1) = Γn(F )

where Γ•XF is the divided power algebra. This has 1X -basis given by xα/n! ranging over xα ∈ SymnF . This
implies

HomX(Sym•XF
∨, 1X) ' Γ̂•X(F )

as co-algebras. (∆ : F → F ⊗ F ) We will then use characteristic zero for

Γn(F ) = SymnF

so we get a simplification.

Proposition
Let X be a solid D-stack and F ∈ [∗/GLd](X).

1. V(F ) g−→ X is weakly cohomologically proper

2. V̂(F ) f−−→ X is cohomologically smooth and there exists an isomorphism

f !1X
∼−−→ f∗

d∧
F∨[d]

f!1V̂(F )

∼−−→
d∧
F ⊗ Γ•XF [−d]

Question : these isomorphisms are functorial in F ? Answer : This is part of the issue in the incomplete
proof.
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Proof. (1) By construction, g is proper. (2) The properties we want to prove satisfies base change. SoWLOG
X = [∗/GLd] and F = St. Cohomological smoothness = 1 ∈ D(V(St)) is suave w.r.t. f : V(St) → [∗/GLd]
and ωf is invertible. This be checked ∗-locally on target. So we pullback along ∗ → [∗/GLd]. 1

This reduces to the cohomological smoothness of Ĝa
d
→ ∗. This factors

Ĝa
d
→ PdZ�

→ ∗

where the first is an open immersion and the latter is cohomologically smooth.

Why is the first open? Take dual basis Ti, 1 ≤ i ≤ d of St.

Ĝa
d j−→ AdZ�

= AnSpec(Z[T ],Z)�
g−→ ∗

It is the complement of the idempotent dg-algebra D defined as :
d⊕
i=1

Di → · · · →
⊕

{j1,...,jk}⊆{1,...,d}

D{j1,...,jk} → · · · → D{1,...,d}

where
Di := (Z[T, 1/Ti],Z)�

D{j1,...,jk} =

k⊕
r=1,Z[T ]

Dj

Geometrically
⋃
i AnSpecDi.

For f!1V̂ note that

(gj)!1Ĝa
d = g∗j!1Ĝa

d = Fib(Z[T ]→ D) =
Z[T±1

1 , . . . , T±1
d ]⊕d

i=1 Z[Ti, T
±1
j 6=i][−d]

= (T1 · · ·Td)−1Z[T−1
1 , . . . , T−1

d ][−d]

Assuming the Cech complex used is GLd equivariant, this implies

f!1V̂(St)

∼−−→
d∧

St⊗ Sym•St[−d]

assuming X is over Q. This was the original claim in the Juan’s paper. However this is false.

Here’s the fix for f !1X . Note that
f∗ : D(V̂(St))→ D(X)

exhibits the source as the (T1, · · · , Td)-adically complete objects in Modf∗1V(St)
(D(X)). So we can compute

via

f∗f
!1X = HomX(f!1V̂(St)

, 1X) =

d∧
St∨ ⊗ ̂Sym•St∨[d]

1Question : The definition of vector bundles shows this is an effective epimorphism in solidD-stacks. But how do we know this is
satisfies universal ∗-descent?

Answer : It should be part of the construction that D(X ) for a solid D-stack X is left Kan extended from representables. Then D
will send colimits in ShD(AffZ�

,Ani) to limits in PrLst. This implies any effective epimorphism satisfies ∗-descent. Then the fact that
effective epimorphisms are universal in topoi implies effective epimorphisms satisfy universal ∗-descent.
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Then f !1X ' f∗
∧d

St∨.

This doesn’t solve the problem for f!1V̂(St)
. Convincing proposal : construct a GLd equivariant pairing

Z[T±1
1 , . . . , T±1

d ]⊕d
i=1 Z[Ti, T

±1
j 6=i][−d]

⊗ (T1 · · ·Td)ZJT1, · · · , TdK→ Z

identifying the left factor with
Homcts((T1 · · ·Td)ZJT1, · · · , TdK,Z)

Here (T1 · · ·Td)ZJT1, · · · , TdK '
∧d

St∨ ⊗ ̂Sym•St∨. The pairing should be f ⊗ g 7→ const(fg) the constant
coefficient.

11 Cotangent complex , solid smooth / étalemaps (TeruhisaKoshikawa)
Solid smooth is a separate notion to cohomologically smooth, but we will see the relation. This section is
roughly based on Lurie’s thesis, where Lurie defines cotangent complex for animated rings.

We will work with PSh(AnRingop,Ani). One can forget about 6-functor formalism for this talk. Define
D(X) := lim←−AnSpecA→X D(A) by right Kan extension.

Definition
ForX ∈ PSh(AnRingop,Ani) andM ∈ D(X),M locally almost connective when for all x : AnSpecA→
X , x∗M ∈ D≤0(X). (almost connective)

ForM ∈ D≤0(A), there is a trivial square-zero extensionA⊕M ,1 determined by underlying condensed ring
A⊗M . There are maps A→ A⊕M → Awhich compose the identity.

Fact (Clausen–Scholze) : For Ã→ A animated condensed rings and ker(π0(Ã)→ π0(A)) is nilpotent ideal,
then analytic ring structures on Ã are equivalent to analytic ring structures on A.

Definition
ForX a prestack on animated condensed rings and LX ∈ D(X) locally almost connective, then we say
LX is an almost cotangent complex when for all x : AnSpecA→ X andM ∈ D(A),

MapD(A)(x
∗LX ,M) ' X(A⊕M)×X(A) {x}

For f : X → Y a morphism of prestacks over animated analytic rings and LX/Y locally almost connec-
tive, then it is called a relative cotangent complex when for all x : AnSpecA→ X andM ∈ D(A),

MapD(A)(x
∗LX/Y ,M) ' X(A⊕M)×X(A)×Y (A)Y (A⊕M) {x}

Intuitively it classifies commuting diagrams

1I’m guessing one can define this as Sym•AM/(M)2.
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AnSpecA X

AnSpec (A⊕M) Y

x

f

Proposition – Standard properties 1. Llim−→i
Xi ' lim−→i

LXi

2. base change of relative cotangent complexes

3. exact triangle from a triple X → Y → S.

Proposition
If f : A → B in animated analytic rings, then AnSpecB → AnSpecA admits a relative cotangent
complex given by B ⊗B LB/A

Proof. Reduce to absolute case. For A→ C andM ∈ D≤0(C), then by the fact about analytic ring structures
uniquely lifting along nilpotent extensions,

MapAnRing/C(A,C ⊕M) ' MapCond(AniRing)/C(A,C ⊕M) ' MapD(A)(LA,M) ' MapD(A)(A⊗A LA,M)

where LA is the cotangent complex for animated condensed rings.

Remark. For B ← A→ C in AnRing, then base change gives

LC/A ⊗C (C ⊗A B) ' LC⊗AB/B

Intuitively, one wants to cancel the C to get
LC/A ⊗A B

However this is not necessarily because this may not land in D(C). This is true under extra assumption of
A→ B being steady, which we will not discuss further.

Proposition – Criterion for equivalence of analytic rings
For A → B in AnRing, then it is an equivalence iff it induces π0A ' π0B and LB/A = 0. [Cam24b,
p. 3.4.8]

Proof. STSA→ B is an equivalence inD(A). Take the coneK inD(A). SupposeK 6= 0. Then takeminimum
n such that πnK 6= 0. There is a morphism

K ⊗A B → LB/A

which is an isomorphism on πn. See Lurie’s thesis. This impliesK ⊗A B → LB/A is an isomorphism on πn.
But the latter is zero by assumption. This implies

0 = πn(K ⊗A B) ' πnK ⊗π0A π0B = πnK

which is a contradiction.
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Example : Let (A,A+) bediscrete classical Tate-Huber pair. ThenL(A,A+)�
' LA. In particular, L(Z[T ],Z)�/Z�

=
Z[T ]dT .

Example : Let (A,A+) → (B,B+) be a morphism of classical Tate-Huber pair. Assume (A,A+)� →
(B,B+)� is steady. Then

π0L(B,B+)�/(A,A
+)�
' I/I2

where I is the kernel of
π0((B,B+)� ⊗(A,A+)�

(B,B+)�)→ (B,B+)�

Under finiteness conditions, this gives Huber’s Kahler differentials.

Example : For A→ C idempotent,

LC/A ' (C ⊗A C)⊗C LC/A ' LC⊗AC/C ' LC/C ' 0

Definition
(Lurie) For X a prestack on analytic rings, we call it infinitesimally cohesive when for any

Ã A

B̃ B

y
f

where π0f is surjective and ker(π0f) is nilpotent, then we have

X(Ã) X(A)

X(B̃) X(B)

y
f

Remark. A general square zero extension Ã→ A by a moduleM is given by

Ã A

A A⊕M [1]

y

Definition
X is nil-complete when X(A) ' lim←−n F (τ≥nA).

A morphism of prestacks on analytic rings X → Y is called infinitesimally cohesive when for all x :
AnSpecA→ Y , the fiber X ×Y AnSpecA is infinitesimally cohesive. Similarly for nil-complete.
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Finally, X → Y is formally smooth when it is infinitesimally cohesive, nil-complete, and furthermore
LX/Y exists and is dual of a connective perfect complex.

Now the solid case.

Definition
Let f : A→ B be a morphism of solid affinoids.

1. we say it is solid finitely presented when B belongs to the smallest category containing A[T ]� =
A⊗Z�

Z[T ]� and stable under finite colimits.

2. we say it is solid smooth / étale when it is formally smooth / étale and analytic-locally on B,
A→ B is solid finitely presented.

3. A standard solid smooth morphism is A → B where B = A[T1, · · · , Td]�/L(f1, · · · , fk) with
f1, · · · , fr ∈ π0A[T1, · · · , Td] and Jacobian has maximal rank (which is k).

Example : For A static, if B := A[T1, · · · , Td]�/(f1, · · · , fr) is static then A→ B is solid finitely presented.

12 Derived rigid geometry I (Naoki Imai)
These two talks will be about solid étale and solid smooth morphisms.

Goal of first talk : Solid smooth implies cohomologically smooth.

Goal of second talk : Serre duality for solid smooth morphism and solid smooth implies locally †-formally
smooth.

Definition
Let f : X → Y be a morphism of derived Tate adic spaces.

1. f affinoid := there exists an affinoid analytic cover (Ui)i of Y such that Vi := Ui×Y X are affinoid.

f strictly affinoid := affinoid and the analytic structure of Vi is induced from Ui.

2. f Zariski closed immersion := strictly affinoid and O(Ui)→ O(Vi) is surjective on π0.

3. f locally solid finitely presented := analytic locally on X and Y , it is solid finitely presented of
bounded affinoid rings.

solid finite presented f := qcqs and locally solid finitely presented.

4. f solid smooth (resp. étale) := analytic locally on X and Y , it is solid smooth (resp. étale)
morphism of bounded affinoid rings.

Proposition
Let f : X → Y be a morphism of derived Tate adic spaces which is a Zariski closed immersion, solid
finitely presented and OX is a perfect in OY -module. Then

1. OX = 1X ∈ D(X) is f -smooth
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2. Assume N∨X/Y := LX/Y [−1] is locally free. Then f !1Y = (
∧d

NX/Y )[−d] where NX/Y is the
OX -dual of N∨X/Y and d is the rank of NX/Y .

In particular, f is cohomologically smooth. a

aBecause we don’t know derived Tate adic spaces are solid D-stacks, we are secretly using 6-functor formalism on stacks in
the analytic topology, rather than for stacks inD-topology.

Proof. (1) For F ∈ D(X) and G ∈ D(Y ),

HomY (f!F,G) ' HomY (F,G) ' HomX(F,HomY (OX , G))

where the first uses surjective on π0, and second uses strictly affinoid. Hence f !G ' HomY (OX , G) '
O∨X ⊗Y G. Using this, we can check that for pullback squares :

X ′ X

Y ′ Y

g′

f ′
y

f

g

we have

Df ′(1X′)⊗ f∗G ' f ′!G
g′∗f !G ' f ′!g∗G

where Df ′(_) := Hom(_, f ′!1Y ). This implies 1X is f -smooth.

(2) By considering the relative diagonal ∆f of f , we have

f !1Y ' ∆∗fπ
∗
1f

!1Y = ∆∗fπ
!
21X

where πi : X ×Y X → X are the projections. Now

π!
21X ' HomX(1X×YX , 1X) ' HomX(

⊕
i=0

i∧
N∨X/Y [i], 1X)

'
d⊕
i=0

i∧
NX/Y [−i] ' 1X×YX ⊗X

d∧
NX/Y [−d] ' π∗2

(
d∧
NX/Y [−d]

)

Hence f !1Y =
∧d

NX/Y [−d].

Proposition
Assume X,Y are derived Tate adic spaces solid smooth over a base derived Tate adic space S, and
f : X → Y a morphism over S which is Zariski closed immersion. Further assume 1X is a perfect
OY -module. Then LX/Y [−1] is locally free.a In particular, f is cohomologically smooth.

aTo be precise, this means there is an analytic cover of X such that on the opens U in this cover, LX/Y [−1]
∣∣
U

=

H0(LX/Y [−1]
∣∣
U

) using the t-structure on D(U). Note that this does not imply that LX/Y [−1]
∣∣
U∩V = H0(LX/Y [−1]

∣∣
U∩V )
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because localisations in analytic geoemtry is not necessarily flat.

Lemma. Let B → C be a standard solid étale map of bounded affinoid rings. Then C ⊗B C → C gives an
open immersion of solid affinoid spaces.

Proof. There is dissatisfaction with whether standard solid smooth is defined using polynomial
algebras or Tate algebras. Couldn’t keep up with proof so see [Cam24b, Lemma 3.6.11]. �

Lemma. f : AnSpecZ[T ]� → AnSpecZ� is cohomologically smooth.

Proof. Not very interesting. See [Cam24b, Lemma 3.6.12] �

Proposition
Let f : X → S be a solid smooth (resp. étale) morphism of derived Tate adic spaces. Then f is
cohomologically smooth (resp. cohomologically étale).

Proof. The point of checking Zariski closed immersions are cohomologically smooth is that analytic-locally,
solid smoothness allows factoring X → AnSpecOS [T1, · · · , Td]� → S where first is closed immersion and
second is projection.

13 Derived rigid geometry II (Naoki Imai)
Proposition – Serre duality
Let f : X → S be a solid smooth map of derived Tate adic spaces. Then f !1S ' ΩdX/S [d] where d is the
relative dimension of f and ΩdX/S :=

∧d LX/S .

Proof. Again, we use the relative diagonal ∆f . We have that ∆f is analytic-locally Zariski closed immersion
such that there exists an analytic neighbourhood U of ∆f where 1X ∈ D(U) is perfect. Let πi : X×SX → X
be the projections. Then using smooth base change

f !1S ' ∆∗fπ
∗
1f

!1S ' ∆∗fπ
!
21X

Assume for a moment that there exists a section ι : S → X such that OS is a perfect OU -module for some
analytic open neighbourhood U ⊆ X of ιS. Then ι∗f !1S = ι∗ΩdX/S [d]. By deformation to the normal cone,
we can construct

X̃ S̃ := P1
S

P1
X

f̃

ι̃

where ι̃ is a section, and
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1. over P1 \ {0}, ι̃ is the base change of ι.

2. over {0}, ι̃ is the zero section of Nan
X/S → S.

Let π : P1
S → S be the projection. Then π∗ is fully faithful. This follows from the projection formula, proper

base change, and the computation that π∗1P1
S

= Z.

Claim π̃∗f̃
!OS̃(d) belongs to the essential image of π∗. . . .

Not very interesting. [Cam24b, Theorem 3.6.15]

Now we move to the topic of †-formally smooth.

– Goal : for smooth rigid spaces X , we want X → Xan
dR to be an effective epimorphism of Tate stacks.

So we need to know lifting against nilpotent extensions implies lifting against †-nilpotent extension. This is
the point of †-formal smoothness.

Definition
Let A ∈ AffRingbR�

. A †-nilpotent ideal of A is full A-module I contained in Nil†(A).

Let T : X → Y in prestacks over bounded affinoids. We say T is †-formally smooth / étale when it is
formally smooth / étale and for allA ∈ AffRingbR�

and †-nilpotent ideal I ofA, the morphism of anima

X(A)→ X(A/I)×Y (A/I) Y (A)

is surjective (resp. equivalence).a

aImai says surjective means surjective on homotopy groups. But shouldn’t it be effective epimorphism of anima, equivalently
surjective on π0?

Proposition
A standard solid smooth (resp. étale) morphism of bounded affinoids is †-formally smooth (resp.
étale).

Proof. Note that R� → R〈T 〉� is †-formally smooth. This follows from [Cam24b, Prop.2.6.16.].1 We show
the étale case. LetA→ B be a standard solid étalemorphism. By expressingA as a colimit of algebras gener-
ated by elements,WLOGA = R〈X1, · · · , Xd〉�〈N[S]〉whereS is a profinite set andB = A〈T1, · · · , Td〉/L(f1, · · · , fd)
with determinant of Jacobian invertible. By rescaling, we can assume |fi| ≤ 1. Thenwe consider lifting prob-
lems

D/I B

D A

where D is a bounded affinoid ring and I ⊆ D is a †-nilpotent ideal.
1For A solid affinoid, a morphism R�[T ]→ A of analytic R�-algebras extends to R〈T 〉� iff R�[T ]→ A†red extends to R〈T 〉�.
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A→ B is 0-truncated implies that the space of solutions is contractible iff π0 = ∗.

etc etc not interesting. [Cam24b, Prop. 3.7.5]

14 Cartier duality II (MingJa Zhang)
Remark. Analytification is defined as _an : PSh(AffR�

) → PSh(AffbR�
) → Shan(AffbR�

) where the first is
restriction and second is sheafify in analytic topology.

Gan
a ⊆ Galg

a Kan extendedback toAffR�
is the open complement to the idempotentR[T ]-algebraR

{
T−1

}†
[T ].

Ĝa ⊆ G†a ⊆
◦

G+
a ⊆ G+

a ⊆ Gan
a ⊆ Galg

a

Definition
GL+,†

d is the analytic spectrum of R〈Ti,j , T 〉†/(det(Ti,j)T − 1). This comes with a morphism

[∗/GL+,†
d ]→ [∗/GLan

d ]

An analytic vector bundle F of rank d on X a Tate stack is one arising from pulling back along

X f−−→ [∗/GLan
d ]

the analytification of the universal rank d vector bundle on [∗/GLd].

If f factors through [∗/GL+,†
d ] then we say F has a lattice F+. We say F is a unitary overconvergent vector

bundle.

We can define the total spaces.

V(F+) := f∗AnSpecR〈T1, · · · , Td〉†

◦
V(F+) :=

⋃
ε>0

πεV(F+)

V(F )† :=
⋂
ε→∞

πεV(F+)

V(F )an :=
⋃
ε→∞

πεV(F+) ' (V(F )alg)an

The main theorems [Cam24b, pp. 4.2.7, 4.3.8, 4.3.13].

Proposition
For X a solid D-stack over Q and F a rank d vector bundle on X in the D-topology,
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1. there exists a pairing
F : V(F)×X X/V̂(F∨)→ BGm,X

such that F ∗O(1) is an isomorphism inKD,X(V(F)→ X/V̂(F∨)) with inverse

F ∗(O(−1))⊗OX

d∧
F∨[−d]

The quotient is over X .

2. there exists a pairing
G : V̂(F∨)×X X/V(F)→ BGm,X

such that G∗O(1) is an isomorphism inKD,X(V̂(F∨)→ X/V(F)) with inverse

G∗(O(−1))⊗
d∧
F [d]

In particular, the associated Fourier-Mukai transforms yield equivalence of categories.

There are similar statements for F : X → [∗/GLan
d ].

Proof. Key inputs :

1. V(F)→ X is weakly cohomologically proper

2. V̂(F)→ X cohomologically smoothwith f !1X
∼−−→ f∗

∧d F∨[d] and f!1V̂
∼−−→
∧d F⊗OX

(Sym•XF)[−d].

3. X → X/V(F) → X has first map f descendable D-cover and second map g cohomologically smooth
and proper, with g!1X = g∗

∧d F [d].

4. X → X/V̂(F)→ X has first map f smooth D-cover and second map g cohomologically smooth with
g!1X

∼−−→ g∗
∧d F [−d].

How to construct the line bundle on V(F) ×X X/V̂(F)? Use Barr-Beck-Lurie : For S solid D-stack and F a
rank d vector bundle in D-topology on S,

D(S/V̂(F∨)) f !

−−→∼ Modf !f!1S
(D(S))

where f !f!1S = f∗End(f!1S). One can compute this as Sym•XF∨. (Probably easiest to dualize and compute
that this is the Hopf algebra corresponding to the group V̂(F∨).) So a line bundle on V(F) ×X X/V̂(F) is
equivalent to a line bundle on V(F)with a action from Sym•XF∨. We takeL := Sym•XF∨withmultiplication
action.

To show the Fourier-Mukai transform associated to F is an equivalence, define

M := F ∗(O(−1))⊗
d∧
F∨[−d]
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suffices to construct unit and counit maps

∆V,!1
∼−−→M ? L

L⊗M ∼−−→ ∆X/V̂ ,!1

Now it’s a longish computation, based on formal properties of ! and * pushforward, pullbacks.

Remark. Question from Zhang : from Barr-Beck-Lurie we have

D(X/V̂(F∨)) f !

−−→∼ ModSym•XF∨(D(X)) ' D(V(F))

One can ask whether this is precisely FM−1? The guess is no, there is probably a shift by (detF)[d].

Another question from Zhang : It is not entirely clear that usual tensor corresponds to convolution? 1

15 Algebraic de Rham stack (Kazuhiro Ito)
Goal : algebraic D-modules of X . This is not used later for analytic D-modules so we will just make every-
thing static. We let Aff≥0

Z�
denote the full subcategory of static solid affinoids.

Definition
Let A be a static condensed ring, I ⊆ A an ideal. We say I is uniformly nilpotent when there exists
n ≥ 0 such that for all f : S → I where S ext.dis., we have f(s1) · · · f(sn) = 0 for any s1, . . . , sn ∈ S.

Definition
Let X ∈ PSh(AffZ�

). Define Xalg
dR ∈ PSh(AffZ�

) by sending A to lim−→I⊆π0A
X(π0(A)/I) where I ranges

over uniformly nilpotent ideals.

Remark.We can compare to schemes. For presheaves X on affines, define

XSch
dR (A) := lim−→

I⊆A
X(A/I)

where I ranges over nilpotent ideals.

For X finitely presented scheme over a field, its functor of points is determined by its restriction to finitely
presented algebras. The above formula then simplifies to X(Ared).

LetPSh AffSch → PSh Aff0≤
Z�
, X 7→ X� be left Kan extension alongRing→ AffRing0≤

Z�
given byA 7→ (A,A)�.

Then (XdR)� = (X�)alg
dR.

Definition
Let A1/Gm ∈ PStk(AffZ�

) given by

A 7→ {O(−1) line bundle on AnSpecAwith a morphism O(−1)→ A}

1The argument should be the same as for any Fourier-Mukai transform. See proof in any book on Fourier-Mukai transforms.
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Let X ∈ PStk(AffZ�
). Define Xalg

dR+ → A1/Gm by

Xalg
dR+(O(−1)→ A) := lim−→

I⊆π0A

X(Cone(Ĩ ⊗O(−1)→ A))

where I ranges over uniformly nilpotent ideals of π0A and Ĩ := A ×π0A I . This is the filtered de Rham
prestack of X .

We also define

Xalg
Hodge Xalg

dR+ Xalg
dR

∗/Gm A1/Gm Gm/Gm

y

y

We have the example :

Proposition
For Ga,� = AnSpecZ[T ]�, we have

(Ga,�)alg
dR+ = (Ga,� × A1/Gm)/Ĝa(−1)

where Ĝa(−1) := ̂V(O(−1))→ A1/Gm.

Proof. For simplicity, work over Gm/Gm. For A static,

Ĝa(A) = Nil(A(∗)) = lim−→
I⊆A

I(∗)

So
(Ga,�)alg

dR+(A) = lim−→
I⊆A

Ga,�(A/I)

Then use surjectivity of
Ga,�(A)→ Ga,�(A/I)

with kernel I(∗). This follows from Z� → Z[T ]� being formally smooth and I ⊆ A being nilpotent.

Definition
Define algebraic de Rham stacks of derived Tate adic spaces as follows :

Stkan(AffbR�
) PStk(AffR�

) PStk(AffR�⊗Q) StkD(AffR�⊗Q)

derived Tate adic spaces

LKE _algdR sheafify
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Similarly for filtered de Rham stack.

Proposition
Let X → Y in derived Tate adic spaces which is locally of solid finite presentation.

1. The induced morphism f : Xalg
dR → Y alg

dR is !-able and we have f!, f∗, f
!, f∗ between D(Xalg

dR ) and
D(Y alg

dR ).

2. If f is solid smooth (resp. étale), then Xalg
dR+ → Y alg

dR+ is cohomologically smooth (resp. étale).

3. AssumeX = AnSpecB and Y = AnSpecA. If f is solid smooth andD-cover (for example rational
open covering) then Xalg

dR+ → Y alg
dR+ satisfies univeral ∗-descent and universal !-descent.

Definition
Let X → Y in derived Tate adic spaces which is solid smooth of relative dimension d. Then we define
the compactly support algebraic de Rham cohomology as

dRc(X/Y ) := (falg
dR+)!(f

alg
dR+)!1Y alg

dR+
∈ D(Y alg

dR+)

Definition – Filtration of OX
For every f : X → A1/Gm corresponding to a f∗O(−1) → 1X ∈ D(X), we obtain a filtration on any
M ∈ D(X) given by tensoring repeatedly with f∗O(−1)→ 1X .

Proposition
The natural filtration on dRc(X/Y ) is complete and the graded pieces are

gr−i(dRc(X/Y )) ' f!((Ω
i)∨X/Y )(−i)[i]

...

16 Analytic de Rham stack (Arthur-César le Bras)
We now restrict over the R�-algebra Qp,�, i.e. make all pseudo-uniformizers p.

Definition
Let X ∈ PStk(AffbQp

). Define XdR as the D-sheafification of the functor on AffbQp

A 7→ X(A†red)

We define the relative de Rham stacks for a morphism X → Y in StkD(AffbQp
),
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XdR/Y XdR

Y YdR

y

Filtered variant X+
dR → A1,an/Gan

m . This is defined as the D-sheafification of

(O(−1)→ A) 7→ X(Cone(Nil†(A)⊗O(−1)→ A))

Question from last talk : What’s the (analytic) ring structure on Cone(Nil†(A)⊗O(−1)→ A) ?

le Bras : Don’t entirely sure.

Comment from audience : Nil†(A)⊗O(−1) should be quasi-ideal of A.
Remark. The D-sheafification is undesireable because it is hard to compute.

In algebraic geometry over a field k of characteristic zero, with stacks in Zariski/étale/fppf topology, then

RΓfppf(SpecR, Ĝa) = Nil(R)[0]

This appears in lecture notes by Bhatt. This fails already in case of perfect k of characteristic p. Consider

k[T ]→ k[T 1/p]

The Cech nerve
k[T 1/p]→ k[T 1/p]⊗k[T ] k[T 1/p]

Taking reduction gives
k[T 1/p]→ k[T 1/p]

So the equalizer gives k[T 1/p] rather than k[T ]. This shows that for already for X = A1
k we need to fppf

sheafify.

One fix : we can restrict only to semi-perfect rings. Similarly in the analytic situation, one could define the
analytic de Rham stack as a functor not on all bounded analytic rings over Qp but only on nilperfectoid rings.
(Bounded analytic rings over Qp with †-reduction gives Tate perfectoid ring over Qp.) Then one does not
need toD-sheafify. Then one would need to compare the analytic de Rham stack in the paper to this one for
stacks we care about (rigid spaces, classifying stacks of p-adic Lie groups, etc). One needs to know we can
find D-covers by nil-perfectoids.

Proposition
Let f : X → Y a morphism of derived Tate adic spaces over Qp.

1. If f is †-formally étale, the morphism

X × A1,an/Gan
m → X+

dR,Y

is an isomorphism.
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2. If f is †-formally smooth then
X × A1,an/Gan

m → X+
dR,Y

is an effective epimorphism. And we have

XHodge/Y := X+
dR/Y ×A1,an/Gan

m
(∗/Gan

m ) ' (X × (∗/Gan
m ))/T †X/Y (−1)

In particular, for X solid smooth Tate adic space over Qp, X → XdR is an effective epimorphism. But this
is not true in general, even for finite type adic spaces (okay for rigid spaces). This is false for X = D :=
AnSpec(Qp〈T 〉,Zp). In fact

DdR :=
(

D†
)

dR

the latter is analytic de Rham stack of overconvergent unit disk.

Example : (AnSpecCp)dR = AnSpecQp.

Example : Ga,� = AnSpec(Qp〈T 〉,Zp〈T 〉) affinoid disk. Then

Ga,�/G†a ∗/G†a

Ga,�,dR ∗

∼

coh. smooth.

Example : Let Ga
† the overconvergent unit disk. Then

Ga
†
/G†a ∗/G†a

(Ga
†
)dR ∗

∼

coh. proper

The key input is the lemma from before : Qp[T ]→ A extends to Qp〈T 〉� iff it extends to Qp〈T 〉� → A†red.

Proposition – 6-functor formalism for filtered analytic D-modules
There is a 6-functor formalism on (le Bras does not say, but presumably) prestacks on bounded affi-
noids over Qp such that

1. a morphism of derived Tate adic spaces of locally finite presentation are !-able.

2. solid smooth (resp. étale) morphisms induce cohomologically smooth (resp. étale) morphism
on analytic de Rham stacks.

An interesting point : We have excision. Let X be derived Tate adic space and U ⊆ X an analytic open.
Then UdR → XdR is a categorical open immersion. Assume Z ⊆ X is a Zariski closed immersion with open
complement U . Then

Z =
⋂

Z⊆V open

45



Assume there exists a cofinal system of closed neighbourhoods of Z. There is some confusion about the
correct conditions but what we want is : the complement of UdR in XdR is

lim←−
V

VdR ' (lim←−
V

V )dR = ((Z ⊆ X)†)dR = ZdR

where the first is as functors on nilperfectoids over Qp and the final is the †-neighbourhood of Z in X .

Example : For Z ⊆ X Zariski closed immersion in X , then

((Z ⊆ X)†)†red = Z

One can see this locally when Z is defined by I = (f1, . . . , fr). This is classically called Kashiwara’s equiva-
lence. Question from audience : does this still work for infinitelymany generators? le Bras : Yes, but requires
more work.

This also works for Z = compactified disk in X = P1
Qp,�

and U the complementary disk.

Now Poincaré duality : It remains to compute the dualizing sheaf for fdR : XdR → 1.

Proposition
Let f : X → Y be a solid smooth morphism of derived Tate adic spaces. Then

f !
dR1 ' CX(T an

X/Y )

where CX is pullback along zero section of the dualizing sheaf for the morphism (T an
X/Y )dR/Y →

XdR/Y .

Thus we can reduce to the case of X = analytic vector bundle V over Y where XdR/Y = V/V†.

Proposition
Let f : X → Y be a solid smooth morphism of derived Tate adic spaces, relative dimension d. Then

f !
dR1YdR

' 1XdR
[2d]

falg,!
dR 1Y alg

dR
' 1Xalg

dR

The second is unexpected. But perhaps solid algebraicD-modules on analytic rings is not the right thing to
consider.
Remark. Poincaré duality for solid algebraicD-modules for schemes over Q can be proved from the 6-functor
formalism for the solid algebraic de Rham stack. Some weird things happen. For f : X → Y morphism
of schemes, f smooth implies falg

dR is cohomologically prim. Also f proper implies falg
dR is cohomologically

étale.

Question from Akhil : how is analytic de Rham stack only depends on diamond?

le Bras : Should be but not entirely clear at what generality.
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17 Locally analytic representations (Dospinescu)
(I was struggling to keep up with this talk so again, apologies if you find more mistakes in this section.)

Current state of affairs :

1. Heyer–Mann on smooth theory.

2. Juan and other Rodriguez on locally analytic. There are serious complications beyond the case of
compact groups.

3. Continuous theory is complete mess.

Let G be a compact p-adic Lie group of dimension d, g := LieG. Work with D(Qp) := D(Qp,�). For any
possibly non-commutative condensed ring R, ModR denotes the stable ∞-category of modules over it in
D(Qp).

Definition
Cc(G,Qp) is the ring of Qp-valued continuous functions on G.

C la(G,Qp) same for locally analytic functions.

Csm(G,Qp) locally constant functions.

Define G? := AnSpecC?(G,Qp). Analytic structure is induced from Qp,�.a

aThis should mean thatD(C?(G,Qp)) := modules over C?(G,Qp) inD(Qp,�).

From Csm ⊆ C la ⊆ Cc we get
∗/G→ ∗/Gla → ∗/Gsm

Proposition 1. D(∗/Gla) ' D(C la(G,Qp)-comodules) (∗)−−−→ ModDla where Dla := HomQp
(C la,Qp)

with internal hom in the heart, i.e. at abelian level. This is a non-commutative algebra with mul-
tiplication from the multiplication of G.

Similarly for smooth and continuous.

2. For smooth and LA, the (∗) is fully faithful and has a colimit preserving right adjoint V 7→
V la, V sm.

For continuous, this is unknown.

3. ∗ → ∗/G? is universal ∗ and universal !-cover. It is proper.

4. ∗/G? → ∗ is proper and smooth. Furthermore, for LA or continuous,

f !1 ' (det g)[d]

for smooth case, it is the modulus character in degree zero. (It parameterisees Haar measures on
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G.)

5. Gla
dR = GcdR = Gsm.

Proof. There are some non-formal inputs to these results.

(Geometry of G?)
Csm = lim−→

H open≤G
C(G/H,Qp)

Cc =

(
lim←−
n

Csm(G,Z/pn)

)
[1/p]

C la = lim−→
H open≤G

CH−an(G,Qp)

where CH-an(G,Qp) is not finite dimensional.

Dsm ' lim←−
H

Qp[G/H]

Dc =

(
lim←−
H

Zp[G/H]

)
[1/p]

Question from Anschutz : Are the limits derived? Dospinescu : No. These are the classical rings people
have studied for long.

We fix L ⊆ g a Zp-lattice with [L,L] ⊆ pL such that L exponentiates to an open normal uniform pro-p
subgroup G0 ⊆ G. Then G0 has an adic model G0 which is rigid group isomorphic to closed polydisc.
Letting L vary as phL with h > 0, we get open and closed polydisks Gh,Gh whose Qp-points Gh, Gh ⊆ G
give a system of neighbourhoods for identity. Then

C la(G) ' lim−→
h

C(G/Gh,Qp)⊗Qp
O(Gh) ' lim−→

h

C(G/Gh,Qp)⊗Qp
O(Gh)

Call Ch := O(Gh), Ch := O(Gh). Then Dla ' lim←−hDh ' lim←−hDh.

Now smooth case. Let Dsm
h := Qp[G/Gh]. Then Dsm = lim←−hD

sm
h . Key property : Dsm

h is compact projective
as Dsm modules. (Even a retract of Dsm.) This is false for Dh.

Replacement :

1. Dh is idempotent over Dla.

2. the trivial rep Qp is actually perfect as Dc or Dla module. (This is a hard theorem of Lazard, Serre,
Kohlhasse.)

3. Dsm is perfect as Dla-module.

4. This resolution allows computation of

RHomDla(Qp, D
la) = RHomDc(Qp, D

c) = Qp(1/(det g))[−d]

This can be seen as Poincaré duality for Lie groups. We also have (much easier to prove)

RHomDsm(Qp, D
sm) = HomG(Csm(G),Qp) = (unimodular character)−1[0]
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(Note to self : These homs should be internal.)

(1) the first equivalence is Barr-Beck and computation of G? ⊗Qp
· · · ⊗Qp

G? as AnSpecC?(G× · · · ×G,Qp).

(Interlude) For ? = LA or smooth, we have an endofunctor

ModD?
_?−−→ ModD?

V 7→ lim−→
h

HomD?(Dh, V )

each term in the colimit is a Dh-module. Then the Rodriguez’s prove :

Proposition
_? is idempotent, colimit preserving.

Rep?G :=
{
V ∈ ModD? s.t. V ? = V

}
is the smallest full subcategory stable under colimits and contains all ModDh

.

This hard outside smooth setting because Dh is not compact in LA case. Nuclearity of Dh is key.

Important : you can test whether V ∈ ModD? is in Rep?G checking the cohomologies lie in Rep?G.

Also useful : V la = HomDla(Qp, C la ⊗ V ) commutes with colimits.

We can thus put a t-structure via the one on ModD? . Then Rep?G = D((Rep?G)♥) where the heart can
explicitly be identified with comodules over C?. So we get

Rep?G ∼−−→ D(comodules over C?) ' D(∗/G?)

Dospinescu : There should be an easier proof of this, but I can’t think of any way.

For properness of ∗to ∗ /G?, suffices to check after pullback along ∗ → ∗/G?. So we reduce to checking
properness of G? → ∗. But C? has induced analytic structure from Qp.

Next, is f : ∗/G? → ∗ proper? We have exceptional descent : it suffices to check π∗1 is descendable where
π : ∗ → ∗/G?. This follows from existence of finite free resolution of Qp by D?-modules.

Is f smooth? Want 1∗/G? to be suave. Suave objects are stable under retracts, fibers and cofibers. So we only
need to find a resolution of this by suave things.

π∗1 = C?  resolution 0→ 1∗/G? → (π∗1)n1 → · · · → (π∗1)nk → 0

But π∗1 = π!1 is f -suave since π is proper and 1 is 1-suave. So f is suave.

f∗f
!1 = f∗Hom(1, f !1) = Hom(f!1, 1) = f∗1, 1

f∗1 is the group cohomology of Gwith coefficients in Qp which is RHomD?(Qp, D?) computed before.

So now we have
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D(∗/G) D(∗/Gla) D(∗/Gsm)

RepcG ReplaG RepsmG

>

'

forget

'

forget
>

'

_la

forget

Dospinescu : for smooth and LA, we have fully faithful functors to derived categories of actual modules
over distribution algebras. But for continuous case, this is still not clear. Also, it would be nice to avoid
the hard result of Lazard to have the comparison between quasicoherent sheaves on classifying stacks and
actual honest representations of groups.
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